scholarly journals Contribution of aerobic and anaerobic capacity to 2000 m rowing performance

Author(s):  
Yusuke Shirai ◽  
Mikio Hiura ◽  
Yoshiraru Nabekura
2021 ◽  
Author(s):  
Manuel Angulo ◽  
Alejandra Polanco ◽  
Luis Muñoz

Abstract Pacing strategies are used in cycling to optimize the power delivered by the cyclist during a race. Gains in race time have been obtained when using these strategies compared to self-paced approaches. For this reason, this study is focused on revising the effect that the variation of the cyclist’s parameters has on the pacing strategy and its results. A numeric method was used to propose pacing strategies for a cyclist riding on an ascending 3.7 km route with a constant 6.26% road grade. The method was validated and then implemented to study the effect of aerobic and anaerobic power delivery capacity, mass, and drag area on the pacing strategies and their corresponding estimated race times. The results showed that modifying 1% of the aerobic capacity or cyclist mass value led to a change of 1% on the race time. Modifying 1% the anaerobic capacity and the drag area led to changes of 0.03% and 0.02% on the race time, respectively. These results are strongly dependent on the route characteristics. It was concluded that for the studied route (constantly ascending), the variation of the cyclist’s aerobic capacity influences the pacing strategy (i.e., the power delivery over the distance). The anaerobic capacity and mass of the cyclist also influence the pacing strategy to a lesser extent.


Sports ◽  
2017 ◽  
Vol 5 (3) ◽  
pp. 57 ◽  
Author(s):  
Hamid Arazi ◽  
Abbas Keihaniyan ◽  
Amin EatemadyBoroujeni ◽  
Amir Oftade ◽  
Sheida Takhsha ◽  
...  

2016 ◽  
Vol 41 (8) ◽  
pp. 864-871 ◽  
Author(s):  
Phillip M. Bellinger ◽  
Clare L. Minahan

The present study investigated the effects of β-alanine supplementation on the resultant blood acidosis, lactate accumulation, and energy provision during supramaximal-intensity cycling, as well as the aerobic and anaerobic contribution to power output during a 4000-m cycling time trial (TT). Seventeen trained cyclists (maximal oxygen uptake = 4.47 ± 0.55 L·min−1) were administered 6.4 g of β-alanine (n = 9) or placebo (n = 8) daily for 4 weeks. Participants performed a supramaximal cycling test to exhaustion (equivalent to 120% maximal oxygen uptake) before (PreExh) and after (PostExh) the 4-week supplementation period, as well as an additional postsupplementation supramaximal cycling test identical in duration and power output to PreExh (PostMatch). Anaerobic capacity was quantified and blood pH, lactate, and bicarbonate concentrations were measured pre-, immediately post-, and 5 min postexercise. Subjects also performed a 4000-m cycling TT before and after supplementation while the aerobic and anaerobic contributions to power output were quantified. β-Alanine supplementation increased time to exhaustion (+12.8 ± 8.2 s; P = 0.041) and anaerobic capacity (+1.1 ± 0.7 kJ; P = 0.048) in PostExh compared with PreExh. Performance time in the 4000-m TT was reduced following β-alanine supplementation (−6.3 ± 4.6 s; P = 0.034) and the mean anaerobic power output was likely to be greater (+6.2 ± 4.5 W; P = 0.035). β-Alanine supplementation increased time to exhaustion concomitant with an augmented anaerobic capacity during supramaximal intensity cycling, which was also mirrored by a meaningful increase in the anaerobic contribution to power output during a 4000-m cycling TT, resulting in an enhanced overall performance.


1996 ◽  
Vol 8 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Glen E. Duncan ◽  
Anthony D. Mahon ◽  
Cheryl A. Howe ◽  
Pedro Del Corral

This study examined the influence of test duration and anaerobic capacity on VO2max and the occurrence of a VO2 plateau during treadmill exercise in 25 boys (10.4 ± 0.8 years). Protocols with 1-min (P1) and 2-min (P2) stages, but identical speed and grade changes, were used to manipulate test duration. On separate days, VO2max was measured on P1 and P2, and 200-m run time was assessed. At maximal exercise, VO2, heart rate (HR), and pulmonary ventilation (VE) were similar between protocols, however, respiratory exchange ratio (RER) and treadmill elevation were higher (p < .05) on P1 than on P2. Plateau achievement was not significantly different. On P1, there were no differences between plateau achievers and nonachievers. On P2, test duration and 200-m run time were superior (p < .05), and relative VO2max tended to be higher (p < .10) in plateau achievers. Indices of aerobic and anaerobic capacity may influence plateau achievement on long, but not short duration tests.


2015 ◽  
Vol 48 (1) ◽  
pp. 87-97 ◽  
Author(s):  
Kamelska Anna Malwina ◽  
Mazurek Krzysztof ◽  
Zmijewski Piotr

AbstractThe study aimed to investigate the differences in the effects of 7-month training on aerobic and anaerobic capacity in tandem cycling athletes with and without visual impairment. In this study, Polish elite (n=13) and sub-elite (n=13) visually impaired (VI) (n=13; 40.8 ±12.8 years) and properly sighted (PS) (n=13; 36.7 ±12.2 years) tandem-cycling athletes participated voluntarily in 7-month routine training. The following pre-/post-training measurements were conducted on separate days: maximal oxygen uptake (VO2max) was estimated with age correction using the Physical Working Capacity test on a bicycle ergometer according to the Astrand-Ryhming method. Maximal power output (Pmax) was evaluated using the Quebec test on a bicycle ergometer. At baseline, VO2max(47.8 ±14.1 vs 42.0 ±8.3 ml/kg/min, respectively) and Pmax(11.5 ±1.5 vs 11.5 ±1.0 W/kg) did not differ significantly between PS and VI cyclists. However, differences in aerobic capacity were considered as clinically significant. Two-way ANOVA revealed that after 7 month training, there were statistically significant increases in VO2max(p=0.003) and Pmax(p=0.009) among VI (VO2max, +9.1%; Pmax, +6.3%) and PS (VO2max, +9.1%; Pmax, +11.7%) cyclists, however, no time x visual impairment interaction effect was found (VO2max, p=0.467; Pmax, p=0.364). After training, VO2max(p=0.03), but not Pmax(p=0.13), was significantly greater in elite compared to sub-elite tandem cyclists. VI and PS tandem cyclists showed similar rates of improvement in VO2maxand Pmaxafter 7-month training. VO2maxwas a significant determinant of success in tandem cycling. This is one of the first studies providing reference values for aerobic and anaerobic capacity in visually impaired cyclists.


Sign in / Sign up

Export Citation Format

Share Document