scholarly journals Physiological tonicity improves human chondrogenic marker expression through nuclear factor of activated T-cells 5 in vitro

2010 ◽  
Vol 12 (3) ◽  
pp. R100 ◽  
Author(s):  
Anna E van der Windt ◽  
Esther Haak ◽  
Ruud HJ Das ◽  
Nicole Kops ◽  
Tim JM Welting ◽  
...  
2015 ◽  
Vol 308 (11) ◽  
pp. F1247-F1258 ◽  
Author(s):  
Daniel Kitterer ◽  
Joerg Latus ◽  
Christoph Ulmer ◽  
Peter Fritz ◽  
Dagmar Biegger ◽  
...  

Peritoneal inflammation and fibrosis are responses to the uremic milieu and exposure to hyperosmolar dialysis fluids in patients on peritoneal dialysis. Cells respond to high osmolarity via the transcription factor nuclear factor of activated T cells (NFAT5). In the present study, the response of human peritoneal fibroblasts to glucose was analyzed in vitro. Expression levels of NFAT5 and chemokine (C-C motif) ligand (CCL2) mRNA were quantified in peritoneal biopsies of five nonuremic control patients, five uremic patients before PD (pPD), and eight patients on PD (oPD) using real-time PCR. Biopsies from 5 control patients, 25 pPD patients, and 25 oPD patients were investigated using immunohistochemistry to detect the expression of NFAT5, CCL2, NF-κB p50, NF-κB p65, and CD68. High glucose concentrations led to an early, dose-dependent induction of NFAT5 mRNA in human peritoneal fibroblasts. CCL2 mRNA expression was upregulated by high concentrations of glucose after 6 h, but, most notably, a concentration-dependent induction of CCL2 was present after 96 h. In human peritoneal biopsies, NFAT5 mRNA levels were increased in uremic patients compared with nonuremic control patients. No significant difference was found between the pPD group and oPD group. CCL2 mRNA expression was higher in the oPD group. Immunohistochemistry analysis was consistent with the results of mRNA analysis. CD68-positive cells were significantly increased in the oPD group. In conclusion, uremia results in NFAT5 induction, which might promote early changes of the peritoneum. Upregulation of NFAT5 in PD patients is associated with NFκB induction, potentially resulting in the recruitment of macrophages.


2018 ◽  
Vol 119 (11) ◽  
pp. 9334-9345 ◽  
Author(s):  
Jungeun Yu ◽  
Stefano Zanotti ◽  
Lauren Schilling ◽  
Ernesto Canalis

2001 ◽  
Vol 12 (5) ◽  
pp. 1499-1508 ◽  
Author(s):  
Carol E. Torgan ◽  
Mathew P. Daniels

Signals that determine fast- and slow-twitch phenotypes of skeletal muscle fibers are thought to stem from depolarization, with concomitant contraction and activation of calcium-dependent pathways. We examined the roles of contraction and activation of calcineurin (CN) in regulation of slow and fast myosin heavy chain (MHC) protein expression during muscle fiber formation in vitro. Myotubes formed from embryonic day 21 rat myoblasts contracted spontaneously, and ∼10% expressed slow MHC after 12 d in culture, as seen by immunofluorescent staining. Transfection with a constitutively active form of calcineurin (CN*) increased slow MHC by 2.5-fold as determined by Western blot. This effect was attenuated 35% by treatment with tetrodotoxin and 90% by administration of the selective inhibitor of CN, cyclosporin A. Conversely, cyclosporin A alone increased fast MHC by twofold. Cotransfection with VIVIT, a peptide that selectively inhibits calcineurin-induced activation of the nuclear factor of activated T-cells, blocked the effect of CN* on slow MHC by 70% but had no effect on fast MHC. The results suggest that contractile activity-dependent expression of slow MHC is mediated largely through the CN–nuclear factor of activated T-cells pathway, whereas suppression of fast MHC expression may be independent of nuclear factor of activated T-cells.


2015 ◽  
Vol 35 (3) ◽  
pp. 412-423 ◽  
Author(s):  
Dongsheng Wu ◽  
Camilla Cerutti ◽  
Miguel A Lopez-Ramirez ◽  
Gareth Pryce ◽  
Josh King-Robson ◽  
...  

Pro-inflammatory cytokine-induced activation of nuclear factor, NF-κB has an important role in leukocyte adhesion to, and subsequent migration across, brain endothelial cells (BECs), which is crucial for the development of neuroinflammatory disorders such as multiple sclerosis (MS). In contrast, microRNA-146a (miR-146a) has emerged as an anti-inflammatory molecule by inhibiting NF-κB activity in various cell types, but its effect in BECs during neuroinflammation remains to be evaluated. Here, we show that miR-146a was upregulated in microvessels of MS-active lesions and the spinal cord of mice with experimental autoimmune encephalomyelitis. In vitro, TNFα and IFNγ treatment of human cerebral microvascular endothelial cells (hCMEC/D3) led to upregulation of miR-146a. Brain endothelial overexpression of miR-146a diminished, whereas knockdown of miR-146a augmented cytokine-stimulated adhesion of T cells to hCMEC/D3 cells, nuclear translocation of NF-κB, and expression of adhesion molecules in hCMEC/D3 cells. Furthermore, brain endothelial miR-146a modulates NF-κB activity upon cytokine activation through targeting two novel signaling transducers, RhoA and nuclear factor of activated T cells 5, as well as molecules previously identified, IL-1 receptor-associated kinase 1, and TNF receptor-associated factor 6. We propose brain endothelial miR-146a as an endogenous NF-κB inhibitor in BECs associated with decreased leukocyte adhesion during neuroinflammation.


1994 ◽  
Vol 14 (10) ◽  
pp. 6886-6895
Author(s):  
N R Yaseen ◽  
J Park ◽  
T Kerppola ◽  
T Curran ◽  
S Sharma

Nuclear factor of activated T cells (NFAT) is a multicomponent transcription factor that contains Fos and Jun family proteins in addition to a constitutively expressed factor(s). It is important for the production of interleukin 2 (IL-2) by T cells and is also expressed in B cells. Here we show that NFAT complexes in B- and T-cell nuclear extracts can be supershifted prominently with Fos antibodies and to a variable extent with Jun family protein antibodies. Fos and Jun proteins appear to participate in NFAT complexes as heterodimers, since efficient in vitro reconstitution of NFAT in unstimulated B- or T-cell nuclear extracts required both Fos and Jun. Using Fos and Jun deletion derivatives, we found that an acidic Fos region (amino acids 118 to 138), outside the DNA binding and dimerization domains, was necessary for the in vitro reconstitution of the NFAT complex in both B- and T-lymphocyte extracts although it was not required for binding to an AP-1 site. Fos-Jun heterodimers exhibited low-affinity direct binding to the NFAT site in the absence of nuclear extracts. This binding also required the Fos acidic region, amino acids 118 to 138. Mutating a variant AP-1 site in the NFAT oligonucleotide abolished both direct binding of Fos-Jun heterodimers and in vitro reconstitution of NFAT. These results demonstrate a central role of Fos in NFAT complex formation in both B and T lymphocytes and show that NFAT assembly involves direct binding of Fos-Jun heterodimers to a variant AP-1 site within the human NFAT recognition site.


Bone ◽  
2013 ◽  
Vol 53 (1) ◽  
pp. 94-102 ◽  
Author(s):  
Marjolein M.J. Caron ◽  
Anna E. van der Windt ◽  
Pieter J. Emans ◽  
Lodewijk W. van Rhijn ◽  
Holger Jahr ◽  
...  

2004 ◽  
Vol 18 (12) ◽  
pp. 3011-3019 ◽  
Author(s):  
Masato Asai ◽  
Yasumasa Iwasaki ◽  
Masanori Yoshida ◽  
Noriko Mutsuga-Nakayama ◽  
Hiroshi Arima ◽  
...  

Abstract GHRH plays a pivotal role in the regulation of both synthesis and secretion of GH in the anterior pituitary. In this study, we examined the molecular mechanism of depolarization-induced GHRH gene transcription using the hypothalamus cell line, Gsh+/+, revealing the involvement of the transcription factor called nuclear factor of activated T cells (NFAT). GHRH, NFAT1, NFAT4, and related genes were endogenously expressed in Gsh+/+ cells and the rat arcuate nucleus, where NFAT1 and GHRH were colocalized. Cellular excitation with high potassium potently stimulated endogenous GHRH gene 5′-promoter activity as well as the NFAT-mediated gene transcription, the former being further enhanced by coexpression of NFAT. On the other hand, cyclosporin A (a calcineurin-NFAT inhibitor) or EGTA (a calcium chelator) significantly blocked the depolarization-induced GHRH gene transcription. EMSA and site-directed mutagenesis experiments showed the direct binding of NFAT at five sites of the GHRH promoter, among which the relative importance of three distal sites (−417/−403, −402/−387, −317/−301) was suggested. Finally, elimination of all five sites completely abolished the NFAT-induced GHRH gene up-regulation. Altogether, our results suggest that the transcription factor NFAT is involved in the depolarization-induced transcriptional activation of GHRH gene in the neuronal cells.


Blood ◽  
2001 ◽  
Vol 98 (5) ◽  
pp. 1480-1488 ◽  
Author(s):  
Alexander Kiani ◽  
Francisco J. Garcı́a-Cózar ◽  
Ivonne Habermann ◽  
Stefanie Laforsch ◽  
Toni Aebischer ◽  
...  

Transcription factors of the nuclear factor of activated T cells (NFAT) family are thought to regulate the expression of a variety of inducible genes such as interleukin-2 (IL-2), IL-4, and tumor necrosis factor-α. However, it remains unresolved whether NFAT proteins play a role in regulating transcription of the interferon- γ (IFN-γ) gene. Here it is shown that the transcription factor NFAT1 (NFATc2) is a major regulator of IFN-γ production in vivo. Compared with T cells expressing NFAT1, T cells lacking NFAT1 display a substantial IL-4–independent defect in expression of IFN-γ mRNA and protein. Reduced IFN-γ production by NFAT1−/−× IL-4−/− T cells is observed after primary in vitro stimulation of naive CD4+ T cells, is conserved through at least 2 rounds of T-helper cell differentiation, and occurs by a cell-intrinsic mechanism that does not depend on overexpression of the Th2-specific factors GATA-3 and c-Maf. Concomitantly, NFAT1−/−× IL-4−/− mice show increased susceptibility to infection with the intracellular parasiteLeishmania major. Moreover, IFN-γ production in a murine T-cell clone is sensitive to the selective peptide inhibitor of NFAT, VIVIT. These results suggest that IFN-γ production by T cells is regulated by NFAT1, most likely at the level of gene transcription.


1994 ◽  
Vol 14 (10) ◽  
pp. 6886-6895 ◽  
Author(s):  
N R Yaseen ◽  
J Park ◽  
T Kerppola ◽  
T Curran ◽  
S Sharma

Nuclear factor of activated T cells (NFAT) is a multicomponent transcription factor that contains Fos and Jun family proteins in addition to a constitutively expressed factor(s). It is important for the production of interleukin 2 (IL-2) by T cells and is also expressed in B cells. Here we show that NFAT complexes in B- and T-cell nuclear extracts can be supershifted prominently with Fos antibodies and to a variable extent with Jun family protein antibodies. Fos and Jun proteins appear to participate in NFAT complexes as heterodimers, since efficient in vitro reconstitution of NFAT in unstimulated B- or T-cell nuclear extracts required both Fos and Jun. Using Fos and Jun deletion derivatives, we found that an acidic Fos region (amino acids 118 to 138), outside the DNA binding and dimerization domains, was necessary for the in vitro reconstitution of the NFAT complex in both B- and T-lymphocyte extracts although it was not required for binding to an AP-1 site. Fos-Jun heterodimers exhibited low-affinity direct binding to the NFAT site in the absence of nuclear extracts. This binding also required the Fos acidic region, amino acids 118 to 138. Mutating a variant AP-1 site in the NFAT oligonucleotide abolished both direct binding of Fos-Jun heterodimers and in vitro reconstitution of NFAT. These results demonstrate a central role of Fos in NFAT complex formation in both B and T lymphocytes and show that NFAT assembly involves direct binding of Fos-Jun heterodimers to a variant AP-1 site within the human NFAT recognition site.


Sign in / Sign up

Export Citation Format

Share Document