scholarly journals Regulation of Myosin Heavy Chain Expression during Rat Skeletal Muscle Development In Vitro

2001 ◽  
Vol 12 (5) ◽  
pp. 1499-1508 ◽  
Author(s):  
Carol E. Torgan ◽  
Mathew P. Daniels

Signals that determine fast- and slow-twitch phenotypes of skeletal muscle fibers are thought to stem from depolarization, with concomitant contraction and activation of calcium-dependent pathways. We examined the roles of contraction and activation of calcineurin (CN) in regulation of slow and fast myosin heavy chain (MHC) protein expression during muscle fiber formation in vitro. Myotubes formed from embryonic day 21 rat myoblasts contracted spontaneously, and ∼10% expressed slow MHC after 12 d in culture, as seen by immunofluorescent staining. Transfection with a constitutively active form of calcineurin (CN*) increased slow MHC by 2.5-fold as determined by Western blot. This effect was attenuated 35% by treatment with tetrodotoxin and 90% by administration of the selective inhibitor of CN, cyclosporin A. Conversely, cyclosporin A alone increased fast MHC by twofold. Cotransfection with VIVIT, a peptide that selectively inhibits calcineurin-induced activation of the nuclear factor of activated T-cells, blocked the effect of CN* on slow MHC by 70% but had no effect on fast MHC. The results suggest that contractile activity-dependent expression of slow MHC is mediated largely through the CN–nuclear factor of activated T-cells pathway, whereas suppression of fast MHC expression may be independent of nuclear factor of activated T-cells.

2019 ◽  
Vol 126 (6) ◽  
pp. 1769-1781 ◽  
Author(s):  
Kristina Sharlo ◽  
Inna Paramonova ◽  
Olga Turtikova ◽  
Sergey Tyganov ◽  
Boris Shenkman

The prevailing myosin isoform [myosin heavy chain (MyHC)] in a skeletal muscle determines contractile properties of the muscle. Under actual or simulated microgravity conditions such as human bed rest or rat hindlimb unloading, decrease in expression of MyHC of the slow type [MyHC I(β)] has been observed. It was demonstrated that increasing sensory input by performing plantar mechanical stimulation (PMS) on the soles of the feet results in an increase in neuromuscular activation of the lower limb muscles and may prevent slow-to-fast fiber type shift. The calcineurin-nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) signaling pathway is the main cascade regulating MyHC I(β) expression. The present study was aimed to analyze the states of the calcineurin-NFATc1 signaling cascade under conditions of PMS during rat hindlimb unloading. Male Wistar rats were randomly assigned to vivarium control groups and 1-day unloading (1HS), 3-day unloading (3HS), 1HS+PMS, and 3HS+PMS groups. We found that both 1 day and 3 days of unloading caused decrease in MyHC I(β) mRNA expression and decrease in glycogen synthase kinase-3β phosphorylation (Ser 9) that brought about the kinase activation, and these effects of unloading were prevented by PMS. Three days of unloading also caused increase in expression of calsarcin-2 (myozenin-I), which was found to be the endogenous calcineurin inhibitor. The level of calsarcin-2 expression in the 3HS+PMS group did not differ from the control group. Therefore, we conclude that PMS upregulates the calcineurin-NFATc1 signaling pathway and prevents unloading-induced MyHC I(β) decrease. NEW & NOTEWORTHY It is widely accepted that changes in the myosin phenotype during functional unloading (disuse) are determined by a decreased expression of the myosin heavy chain (MyHC) I(β) gene, and this decrease leads to changes of contractile and fatigue characteristics of soleus muscle. The calcineurin-nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) pathway is one of the most important signaling cascades regulating slow MyHC isoform expression. The present study is the first to show that plantar mechanical stimulation upregulates calcineurin-NFATc1 signaling in soleus muscles of hindlimb-unloaded rats.


2015 ◽  
Vol 308 (11) ◽  
pp. F1247-F1258 ◽  
Author(s):  
Daniel Kitterer ◽  
Joerg Latus ◽  
Christoph Ulmer ◽  
Peter Fritz ◽  
Dagmar Biegger ◽  
...  

Peritoneal inflammation and fibrosis are responses to the uremic milieu and exposure to hyperosmolar dialysis fluids in patients on peritoneal dialysis. Cells respond to high osmolarity via the transcription factor nuclear factor of activated T cells (NFAT5). In the present study, the response of human peritoneal fibroblasts to glucose was analyzed in vitro. Expression levels of NFAT5 and chemokine (C-C motif) ligand (CCL2) mRNA were quantified in peritoneal biopsies of five nonuremic control patients, five uremic patients before PD (pPD), and eight patients on PD (oPD) using real-time PCR. Biopsies from 5 control patients, 25 pPD patients, and 25 oPD patients were investigated using immunohistochemistry to detect the expression of NFAT5, CCL2, NF-κB p50, NF-κB p65, and CD68. High glucose concentrations led to an early, dose-dependent induction of NFAT5 mRNA in human peritoneal fibroblasts. CCL2 mRNA expression was upregulated by high concentrations of glucose after 6 h, but, most notably, a concentration-dependent induction of CCL2 was present after 96 h. In human peritoneal biopsies, NFAT5 mRNA levels were increased in uremic patients compared with nonuremic control patients. No significant difference was found between the pPD group and oPD group. CCL2 mRNA expression was higher in the oPD group. Immunohistochemistry analysis was consistent with the results of mRNA analysis. CD68-positive cells were significantly increased in the oPD group. In conclusion, uremia results in NFAT5 induction, which might promote early changes of the peritoneum. Upregulation of NFAT5 in PD patients is associated with NFκB induction, potentially resulting in the recruitment of macrophages.


Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2232
Author(s):  
Valentina Pallottini ◽  
Mayra Colardo ◽  
Claudia Tonini ◽  
Noemi Martella ◽  
Georgios Strimpakos ◽  
...  

Despite its undisputable role in the homeostatic regulation of the nervous system, the nerve growth factor (NGF) also governs the relevant cellular processes in other tissues and organs. In this study, we aimed at assessing the expression and the putative involvement of NGF signaling in skeletal muscle physiology. To reach this objective, we employed satellite cell-derived myoblasts as an in vitro culture model. In vivo experiments were performed on Tibialis anterior from wild-type mice and an mdx mouse model of Duchenne muscular dystrophy. Targets of interest were mainly assessed by means of morphological, Western blot and qRT-PCR analysis. The results show that proNGF is involved in myogenic differentiation. Importantly, the proNGF/p75NTR pathway orchestrates a slow-to-fast fiber type transition by counteracting the expression of slow myosin heavy chain and that of oxidative markers. Concurrently, proNGF/p75NTR activation facilitates the induction of fast myosin heavy chain and of fast/glycolytic markers. Furthermore, we also provided evidence that the oxidative metabolism is impaired in mdx mice, and that these alterations are paralleled by a prominent buildup of proNGF and p75NTR. These findings underline that the proNGF/p75NTR pathway may play a crucial role in fiber type determination and suggest its prospective modulation as an innovative therapeutic approach to counteract muscle disorders.


1976 ◽  
Vol 143 (2) ◽  
pp. 444-449 ◽  
Author(s):  
L Hudson ◽  
J Sprent

Evidence is presented to support the contention that IgM demonstrable by surface immunofluorescent staining on H-2-activated T cells represents specifically adsorbed B-cell-derived alloantibody. T cells activated to H-2 determinants expressed surface IgM only when the progenitor cell populations contained B lymphocytes. IgM was not detected on T cells activated to determinants which fail to stimulate alloantibody production (e.g., M-locus determinants). In addition, IgM-negative H-2 activated T cells (derived from B-cell-depleted lymphoid cells), unlike M-locus-activated T cells, adsorbed IgM in a specific manner when incubated in vitro with "early bleed" antisera raised against the activating H-2 determinants.


2018 ◽  
Vol 119 (11) ◽  
pp. 9334-9345 ◽  
Author(s):  
Jungeun Yu ◽  
Stefano Zanotti ◽  
Lauren Schilling ◽  
Ernesto Canalis

2006 ◽  
Vol 175 (1) ◽  
pp. 87-97 ◽  
Author(s):  
Mara Fornaro ◽  
Peter M. Burch ◽  
Wentian Yang ◽  
Lei Zhang ◽  
Claire E. Hamilton ◽  
...  

The formation of multinucleated myofibers is essential for the growth of skeletal muscle. The nuclear factor of activated T cells (NFAT) promotes skeletal muscle growth. How NFAT responds to changes in extracellular cues to regulate skeletal muscle growth remains to be fully defined. In this study, we demonstrate that mice containing a skeletal muscle–specific deletion of the tyrosine phosphatase SHP-2 (muscle creatine kinase [MCK]–SHP-2 null) exhibited a reduction in both myofiber size and type I slow myofiber number. We found that interleukin-4, an NFAT-regulated cytokine known to stimulate myofiber growth, was reduced in its expression in skeletal muscles of MCK–SHP-2–null mice. When SHP-2 was deleted during the differentiation of primary myoblasts, NFAT transcriptional activity and myotube multinucleation were impaired. Finally, SHP-2 coupled myotube multinucleation to an integrin-dependent pathway and activated NFAT by stimulating c-Src. Thus, SHP-2 transduces extracellular matrix stimuli to intracellular signaling pathways to promote skeletal muscle growth.


2010 ◽  
Vol 12 (3) ◽  
pp. R100 ◽  
Author(s):  
Anna E van der Windt ◽  
Esther Haak ◽  
Ruud HJ Das ◽  
Nicole Kops ◽  
Tim JM Welting ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document