scholarly journals Residual Stress Relaxation of Thin-walled Long Stringer Made of Aluminum Alloy 7050-T7451 under Transportation Vibration

2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Yinfei Yang ◽  
Lu Jin ◽  
Jixing Du ◽  
Liang Li ◽  
Wei Yang
2011 ◽  
Vol 462-463 ◽  
pp. 343-348 ◽  
Author(s):  
Omar Suliman Zaroog ◽  
Aidy Ali ◽  
Sahari B. Barkawi ◽  
Rizal Zahari

The residual stress relaxation can be divided into two stages: The first cycle relaxation and the following cycles. In both stages, residual stress relaxed considerably from the initial state. The aim of this study is to investigate the residual stress relaxation and microhardness reduction after first and second cyclic load. A 2024 T351 aluminum alloy specimens were shot peened into three shot peening intensities. The fatigue test for first and second cyclic loads of two loads 15.5 kN and 30 kN was performed. The initial residual stress and residual stress after the first and second cycle stress was measured for the three shot peening intensities using X-ray diffraction. Microhardness test was performed for each specimen. The results showed that the residual stress relaxation for first cycle was reached more than 40% of the initial residual stress and it depends on the load amplitude, and microhardness decreased for the first cycle reached 22% and also it depended on load amplitude.


2011 ◽  
Vol 117-119 ◽  
pp. 1656-1661
Author(s):  
Di Guan ◽  
Qin Sun

Cold expansion is a well-known technique for improving the fatigue life of fastener holes in aeronautical structures by introducing a compressive residual stress field around them. In this paper, a 3-D finite element model is used to analyze the residual stress distribution and relaxation around an expanded hole for aluminum alloy 7050. The results reveal that the cutting process of split sleeve cold expansion and creep are main reason for residual stress relaxation in room temperature, which may limit the beneficial effects of cold expansion.


2010 ◽  
Vol 160-162 ◽  
pp. 241-246 ◽  
Author(s):  
Yong Hui Hu ◽  
Yun Xin Wu ◽  
Guang Yu Wang ◽  
Jun Kang Guo

Different distributed residual stresses were introduced by quenching and two shot-peening treatments on 7075 aluminum alloy. The residual stress distributions and micro-hardness profiles in surface layers were measured. Pre-stress coefficient characterizing contribution of local residual stresses to local yield strength is introduced to analyze residual stress relaxation under cyclic loading. Load testing shows that re-distribution of residual stresses and proportional decrease of the pre-stress coefficient would occur in the non-uniform structural residual stresses introduced by quenching, while great stress relaxation and non-linear decrease of the pre-stress coefficient would occur in the uniform surface residual stresses introduced by shot-peening. Additionally, advantages of surface compressive residual stress and micro yield strength on anti-fatigue property and on restraining initiation and propagation of surface micro cracks should be considered in the usually conservative engineering design.


2020 ◽  
Vol 21 (5) ◽  
pp. 505
Author(s):  
Yousef Ghaderi Dehkordi ◽  
Ali Pourkamali Anaraki ◽  
Amir Reza Shahani

The prediction of residual stress relaxation is essential to assess the safety of welded components. This paper aims to study the influence of various effective parameters on residual stress relaxation under cyclic loading. In this regard, a 3D finite element modeling is performed to determine the residual stress in welded aluminum plates. The accuracy of this analysis is verified through experiment. To study the plasticity effect on stress relaxation, two plasticity models are implemented: perfect plasticity and combined isotropic-kinematic hardening. Hence, cyclic plasticity characterization of the material is specified by low cycle fatigue tests. It is found that the perfect plasticity leads to greater stress relaxation. In order to propose an accurate model to compute the residual stress relaxation, the Taguchi L18 array with four 3-level factors and one 6-level is employed. Using statistical analysis, the order of factors based on their effect on stress relaxation is determined as mean stress, stress amplitude, initial residual stress, and number of cycles. In addition, the stress relaxation increases with an increase in mean stress and stress amplitude.


2011 ◽  
Vol 462-463 ◽  
pp. 1355-1360
Author(s):  
Omar Suliman Zaroog ◽  
Aidy Ali ◽  
Sahari B. Barkawi

It is important to account for residual stress relaxation phenomenon in the design of the component. Specimens of 2024-T351 aluminium alloy were used in this study. The specimens were shot peened under three different shot peening intensities. Cyclic tests for two load magnitudes were performed for 1, 2, 10, 1000 and 10000 cycles. Residual stresses, microhardness and the cold work percentage were measured at initial state and after each loading cycle for the three shot peening intensities and for the two loads. The study revealed that most of the drop in the residual stress, microhardness and cold work happened in the first cycle are dependent on the applied load.


Sign in / Sign up

Export Citation Format

Share Document