scholarly journals A Comprehensive Review of Isogeometric Topology Optimization: Methods, Applications and Prospects

2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Jie Gao ◽  
Mi Xiao ◽  
Yan Zhang ◽  
Liang Gao

AbstractTopology Optimization (TO) is a powerful numerical technique to determine the optimal material layout in a design domain, which has accepted considerable developments in recent years. The classic Finite Element Method (FEM) is applied to compute the unknown structural responses in TO. However, several numerical deficiencies of the FEM significantly influence the effectiveness and efficiency of TO. In order to eliminate the negative influence of the FEM on TO, IsoGeometric Analysis (IGA) has become a promising alternative due to its unique feature that the Computer-Aided Design (CAD) model and Computer-Aided Engineering (CAE) model can be unified into a same mathematical model. In the paper, the main intention is to provide a comprehensive overview for the developments of Isogeometric Topology Optimization (ITO) in methods and applications. Finally, some prospects for the developments of ITO in the future are also presented.

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 959
Author(s):  
Verónica Rodríguez ◽  
Celia Tobar ◽  
Carlos López-Suárez ◽  
Jesús Peláez ◽  
María J. Suárez

The aim of this study was to investigate the load to fracture and fracture pattern of prosthetic frameworks for tooth-supported fixed partial dentures (FPDs) fabricated with different subtractive computer-aided design and computer-aided manufacturing (CAD-CAM) materials. Materials and Methods: Thirty standardized specimens with two abutments were fabricated to receive three-unit posterior FDP frameworks with an intermediate pontic. Specimens were randomly divided into three groups (n = 10 each) according to the material: group 1 (MM)—milled metal; group 2 (L)—zirconia; and group 3 (P)—Polyetheretherketone (PEEK). The specimens were thermo-cycled and subjected to a three-point bending test until fracture using a universal testing machine (cross-head speed: 1 mm/min). Axial compressive loads were applied at the central fossa of the pontics. Data analysis was made using one-way analysis of variance, Tamhane post hoc test, and Weibull statistics (α = 0.05). Results: Significant differences were observed among the groups for the fracture load (p < 0.0001). MM frameworks showed the highest fracture load values. The PEEK group registered higher fracture load values than zirconia samples. The Weibull statistics corroborated these results. The fracture pattern was different among the groups. Conclusions: Milled metal provided the highest fracture load values, followed by PEEK, and zirconia. However, all tested groups demonstrated clinically acceptable fracture load values higher than 1000 N. PEEK might be considered a promising alternative for posterior FPDs.


2013 ◽  
Vol 726-731 ◽  
pp. 3811-3817
Author(s):  
Yuan Feng ◽  
Ji Xian Wang

The analysis of the slope stability is important in soil conservation. To analyze the slope stability, optimization methods were coded and compared with the traditional experience-based methods. Furthermore, the results were visualized in the program, so that the user can easily check the results and can designate an area, in which the program seeks the center and radius of the most hazardous slide arc. Moreover, the graphic interaction function was implemented in the program. In addition, the Standard Model One, recommended by ACAD (The Association for Computer Aided Design), was calculated by the program, of which the results (safety factor Ks=0.95~0.96) were smaller than the official recommend value (Ks=1). It is because that the traditional slice method, which neglects the normal stress and shear stress between the slices, was applied for calculation of Ks.


2020 ◽  
Vol 22 (1) ◽  
pp. 285-307 ◽  
Author(s):  
Elishai Ezra Tsur

Microfluidic devices developed over the past decade feature greater intricacy, increased performance requirements, new materials, and innovative fabrication methods. Consequentially, new algorithmic and design approaches have been developed to introduce optimization and computer-aided design to microfluidic circuits: from conceptualization to specification, synthesis, realization, and refinement. The field includes the development of new description languages, optimization methods, benchmarks, and integrated design tools. Here, recent advancements are reviewed in the computer-aided design of flow-, droplet-, and paper-based microfluidics. A case study of the design of resistive microfluidic networks is discussed in detail. The review concludes with perspectives on the future of computer-aided microfluidics design, including the introduction of cloud computing, machine learning, new ideation processes, and hybrid optimization.


2017 ◽  
Vol 84 (6) ◽  
Author(s):  
Ming Li ◽  
Yangjun Luo ◽  
HuaPing Wu ◽  
Kai Zhu ◽  
Yanzhuang Niu ◽  
...  

For both polyimide membranes in aerospace and graphene membranes in nanoelectronics with surface accuracy requirements, wrinkles due to the extreme out-of-plane flexibility yield inverse influences on the properties and applications of membranes. In this study, on the basis of discrete topology optimization, we propose a prenecking strategy by adopting elliptical free edges to suppress the stretch-induced wrinkling. This prenecking strategy with the computer-aided-design (CAD)-ready format is versatile to eliminate wrinkles in stretched membranes with clamped ends and achieve wrinkle-free performances. The wrinkle-free capability of the prenecking strategy, capable of satisfying the shape accuracy requirements, indicates that by suffering insignificant area loss, concerning of wrinkling problems in membranes is no further required. As compared with the existing researches focusing on studying wrinkling behaviors, the prenecking strategy offers a promising solution to the stretch-induced wrinkling problem by eliminating wrinkles through design optimization.


Author(s):  
Vlad Florea ◽  
Vishrut Shah ◽  
Stephen Roper ◽  
Garrett Vierhout ◽  
Il Yong Kim

Over the past decade there has been an increasing demand for light-weight components for the automotive and aerospace industries. This has led to significant advancement in Topology Optimization methods, especially in developing new algorithms which can consider multi-material design. While Multi-Material Topology Optimization (MMTO) can be used to determine the optimum material layout and choice for a given engineering design problem, it fails to consider practical manufacturing constraints. One such constraint is the practical joining of multi-component designs. In this paper, a new method will be proposed for simultaneously performing MMTO and Joint Topology Optimization (JTO). This algorithm will use a serial approach to loop through the MMTO and JTO phases to obtain a truly optimum design which considers both aspects. A case study is performed on an automotive ladder frame chassis component as a proof of concept for the proposed approach. Two loops of the proposed process resulted in a reduction of components and in the number of joints used between them. This translates into a tangible improvement in the manufacturability of the MMTO design. Ultimately, being able to consider additional manufacturing constraints in the Topology Optimization process can greatly benefit research and development efforts. A better design is reached with fewer iterations, thus driving down engineering costs. Topology Optimization can help in determining a cost effective and efficient design which address existing structural design challenges.


2021 ◽  
Vol 11 (22) ◽  
pp. 10980
Author(s):  
Enrico Dalpadulo ◽  
Fabio Pini ◽  
Francesco Leali

The use of Topology Optimization techniques has seen a great development since the last decade. The principal contributor to this trend is the widespread use of Additive Manufacturing technologies to effectively build complex and performant structures over different settings. Nevertheless, the use of Topology Optimization in Design for Additive Manufacturing processes is not simple and research aims to fill the gap between theory and practice by evolving at the same time both approaches, workflows, and design software that allow their implementation. Since a strong connection between methodologies and tools exists, this work proposes a method to assess computer-aided design tools or platforms. This can be applied to sustain the key phase for selection and adoption of the computer-aided tools in industrial settings embracing Additive Manufacturing. The workflow for Topology Optimization implementation, the structure of the proposed evaluation approach, and its application, are presented to demonstrate effective usability. The automotive case study is the redesign of internal combustion engine piston to benefit of metal Additive Manufacturing based enhanced product performance. A preliminary finite element model is defined and a Topology Optimization based redesign is concurrently set up through four different commercial computer-based platforms. The method accounting for the assessment of required operations for the design optimization is applied to perform the tools selection phase.


Sign in / Sign up

Export Citation Format

Share Document