scholarly journals Robotic Walker for Slope Mobility Assistance with Active-Passive Hybrid Actuator

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Junqiang Li ◽  
Lei Zhao ◽  
Tiejun Li

AbstractWalking assistance can be realized by active and passive robotic walkers when their users walk on even roads. However, fast signal processing and real-time control are necessary for active robotic walkers when the users walk on slopes, while assistive forces cannot be provided by passive robotic walkers when the users walk uphill. A robotic walker with an active-passive hybrid actuator (APHA) was developed in this study. The APHA, which consists of a rotary magnetorheological (MR) brake and a DC motor, can provide mobility assistance to users walking both uphill and downhill via the cooperative operation of the MR brake and DC motor. The rotary MR brake was designed with a T-shaped configuration, and the system was optimized to minimize the brake volume. Prototypes of the APHA and robotic walker were constructed. A control algorithm for the robotic walker was developed based on the characteristics of the APHA and the structure of the robotic walker. The mechanical properties of the APHA were characterized, and experiments were conducted to evaluate the mobility assistance supplied by the robotic walker on different roads. The results show that the APHA can meet the requirements of the robotic walker, and suitable assistive forces can be provided by the robotic walker, which has a simple mechanical structure and control method.

2018 ◽  
Vol 4 (2) ◽  
pp. 66
Author(s):  
Mohamad Fauzi Radsanjani ◽  
Dwi Astharini

<p><em>Abstract</em><strong> – This final project report present a Pc based real time control of DC motor. Real time control systems can be defined as a technology which is related to mechanical application, electronic, and computer-based systems. In general, the equipment that is often used for controlling speed system is Arduino Mega 2560, DC motor, motor driver IC L298N, speed sensor IC LM393, and voltage sensor. Software in the system I used Matlab Simulink to monitor and control the speed of dc motor will show real data, they are displayed in signal RPM and signal Voltage, Matlab Simulink is used program to let the operator operates the system well. This monitor and control system can improve the effectiveness and efficiency in various industrial fields.</strong></p><p><strong> </strong></p><p><strong><em>Keyword –</em></strong><strong> </strong><em>PC, Real Time, Control, DC Motor</em></p><p><em> </em></p>


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Xinsheng Xu ◽  
Xiaoli Xu ◽  
Ying Liu ◽  
Kai Zhong ◽  
Haowei Zhang

Abstract Purpose The purpose of this paper is to design a prosthetic limb that is close to the motion characteristics of the normal human ankle joint. Methods In this study, combined with gait experiments, based on a dynamic ankle joint prosthesis, an active–passive hybrid-driven prosthesis was designed. On this basis, a real-time control algorithm based on the feedforward compensation angle outer loop is proposed. To test the effectiveness of the control method, a multi-body dynamic model and a controller model of the prosthesis were established, and a co-simulation study was carried out. Results A real-time control algorithm based on the feedforward compensation angle outer loop can effectively realize the gait angle curve measured in the gait test, and the error is less than the threshold. The co-simulation result and the test result have a high close rate, which reflects the real-time nature of the control algorithm. The use of parallel springs can improve the energy efficiency of the prosthetic system. Conclusions Based on the motion characteristics of human ankle joint prostheses, this research has completed an effective and feasible design of active and passive ankle joint prostheses. The use of control algorithms improves the controllability of the active and passive ankle joint prostheses.


2014 ◽  
Vol 686 ◽  
pp. 126-131
Author(s):  
Xiao Yan Sha

Taking embedded processor as the core control unit, the paper designs the fan monitoring system software and hardware to achieve the fan working condition detection and real-time control. For the control algorithm, the paper analyzes the fuzzy control system theory and composition, and then combined with tunnel ventilation particularity, introduce feed-forward model to predict the incremental acquisition of pollutants to reduce lag, combined with the system feedback value and the set value, by calculate of two independent computing fuzzy controller, and ultimately determine the number of units increase or decrease in the tunnel jet fans start and stop. Through simulation analysis, the introduction of a feed-forward signal, it can more effectively improve the capability of the system impact of interference.


Author(s):  
Hamid Khakpour Nejadkhaki ◽  
John F. Hall ◽  
Minghui Zheng ◽  
Teng Wu

A platform for the engineering design, performance, and control of an adaptive wind turbine blade is presented. This environment includes a simulation model, integrative design tool, and control framework. The authors are currently developing a novel blade with an adaptive twist angle distribution (TAD). The TAD influences the aerodynamic loads and thus, system dynamics. The modeling platform facilitates the use of an integrative design tool that establishes the TAD in relation to wind speed. The outcome of this design enables the transformation of the TAD during operation. Still, a robust control method is required to realize the benefits of the adaptive TAD. Moreover, simulation of the TAD is computationally expensive. It also requires a unique approach for both partial and full-load operation. A framework is currently being developed to relate the TAD to the wind turbine and its components. Understanding the relationship between the TAD and the dynamic system is crucial in the establishment of real-time control. This capability is necessary to improve wind capture and reduce system loads. In the current state of development, the platform is capable of maximizing wind capture during partial-load operation. However, the control tasks related to Region 3 and load mitigation are more complex. Our framework will require high-fidelity modeling and reduced-order models that support real-time control. The paper outlines the components of this framework that is being developed. The proposed platform will facilitate expansion and the use of these required modeling techniques. A case study of a 20 kW system is presented based upon the partial-load operation. The study demonstrates how the platform is used to design and control the blade. A low-dimensional aerodynamic model characterizes the blade performance. This interacts with the simulation model to predict the power production. The design tool establishes actuator locations and stiffness properties required for the blade shape to achieve a range of TAD configurations. A supervisory control model is implemented and used to demonstrate how the simulation model blade performs in the case study.


2012 ◽  
Vol 594-597 ◽  
pp. 738-741 ◽  
Author(s):  
Yin Duan ◽  
Xing Hong Liu ◽  
Xiao Lin Chang

Main factors of the temperature control and crack prevention in arch dams are summarized. The Space-time Dynamic Control method in pipe cooling process and the Temperature Real-time Control and Decision Database System are introduced to help for temperature real-time control and rapid analysis. Successful application of these new techniques in the construction of Dagangshan arch dam indicates that the proposed method are of significant effectiveness on the temperature control and crack prevention, and have good application prospect in practical project.


Author(s):  
Xiang Liu ◽  
Xiaogeng Liang

To solve the multi-interceptor coordination problem and to intercept the target with impact angle constraint, a novel distributed cooperative control algorithm with impact angle constraint based on integrated guidance and control is proposed. First, the mathematic model of integrated guidance and control is established by combining the interceptor-target relative motion model with the dynamic equation of the interceptor on pitch plane. The time varying gain extended state observer is developed to estimate and compensate the unknown disturbance. Based on the estimated value and fast nonsingular dynamic surface sliding control method, the IGC algorithm of leader is given; Then, based on distributed cooperative "leader-follower" model, the cooperative control strategy of multi-interceptor is designed, and gives out speeds in two directions on pitch plane, which are transformed to the command of total velocity and trajectory angle based on kinematic relations. Finally, to control the follower, the time varying gain extended state observer and the dynamic surface sliding control method are adopted. The simulation results demonstrate the effectiveness of the distributed cooperative control algorithm.


1999 ◽  
Author(s):  
Kenneth Wong ◽  
Vinod J. Modi ◽  
Clarence W. de Silva ◽  
Arun K. Misra

Abstract This paper presents the design and development of a Multi-module Deployable Manipulator System (MDMS) as well as a dynamical formulation for it. The system is designed for experimental investigations aimed at dynamics and control of this variable geometry manipulator by implementing different control algorithms to regulate its performance. The manipulator operates in a horizontal plane and is unique in that it comprises of four modules, each of which has one revolute joint and one prismatic joint, connected in a chain topology. Each module has a slewing link of approximately 20cm length and is capable of extending by 15cm. The manipulator design involves the selection and sizing of actuators, the design of mounting and connecting components, and the selection of hardware as well as software for real-time control. The dynamical model is formulated using an O(N) algorithm, based on the Lagrangian approach and velocity transformations. The O(N) character is computationally efficient permitting real-time control of the system.


Author(s):  
Qiong Li ◽  
Wangling Yu ◽  
H. Henry Zhang

Designing a two-wheeled self-balancing scooter involves in the synergistic approach of multidisciplinary engineering fields with mutual relationships of power transmission, mass transmission, and information transmission. The scooter consists of several subsystems and forms a large-scale system. The mathematical models are in the complex algebraic and differential equations in the form of high dimension. The complexity of its controller renders difficulties in its realization due to the limit of iteration period of real time control. Routh model reduction technique is employed to convert the original high-dimensional mathematical model into a simplified lower dimensional form. The modeling is derived using a unified variational method for both mechanical and electrical subsystems of the scooter, and for the electronic components equivalent circuit method is adopted. Simulations of the system response are based on the reduced model and its control design. A prototype is developed and realized with Matlab-Labview simulation and control environment.


Sign in / Sign up

Export Citation Format

Share Document