scholarly journals Temperature Effect on the Mechanical Properties of Electrospun PU Nanofibers

2018 ◽  
Vol 13 (1) ◽  
Author(s):  
Ji Zhou ◽  
Qing Cai ◽  
Xing Liu ◽  
Yanhuai Ding ◽  
Fu Xu
2015 ◽  
Vol 75 ◽  
pp. 342-348 ◽  
Author(s):  
Rami A. Hawileh ◽  
Adi Abu-Obeidah ◽  
Jamal A. Abdalla ◽  
Adil Al-Tamimi

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 423
Author(s):  
Thorsten Michler ◽  
Frank Schweizer ◽  
Ken Wackermann

It is well-documented experimentally that the influence of hydrogen on the mechanical properties of structural alloys like austenitic stainless steels, nickel superalloys, and carbon steels strongly depends on temperature. A typical curve plotting any hydrogen-affected mechanical property as a function of temperature gives a temperature THE,max, where the degradation of this mechanical property reaches a maximum. Above and below this temperature, the degradation is less. Unfortunately, the underlying physico-mechanical mechanisms are not currently understood to the level of detail required to explain such temperature effects. Though this temperature effect is important to understand in the context of engineering applications, studies to explain or even predict the effect of temperature upon the mechanical properties of structural alloys could not be identified. The available experimental data are scattered significantly, and clear trends as a function of chemistry or microstructure are difficult to see. Reported values for THE,max are in the range of about 200–340 K, which covers the typical temperature range for the design of structural components of about 230–310 K (from −40 to +40 °C). That is, the value of THE,max itself, as well as the slope of the gradient, might affect the materials selection for a dedicated application. Given the current lack of scientific understanding, a statistical approach appears to be a suitable way to account for the temperature effect in engineering applications. This study reviews the effect of temperature upon hydrogen effects in structural alloys and proposes recommendations for test temperatures for gaseous hydrogen applications.


2014 ◽  
Vol 50 (15) ◽  
pp. 1511-1513 ◽  
Author(s):  
V. P. Nikolaev ◽  
E. V. Myshenkova ◽  
V. S. Pichugin ◽  
E. N. Sinitsyn ◽  
A. N. Khoroshev

Jurnal METTEK ◽  
2018 ◽  
Vol 4 (1) ◽  
pp. 23
Author(s):  
I Ketut Suarsana ◽  
IGN Nitya Santhiarsa ◽  
DNK Putra Negara

Perlakuan panas adalah pemanasan yang diikuti dengan penahanan dan pendinginan menggunakan media quenching. Pengerasan adalah pemanasan logam hingga suhu austenit, tahan pada suhu tersebut untuk sementara waktu dan kemudian didinginkan pada media pendinginan seperti air, minyak, udara, air garam. Untuk mengatasi perubahan sifat mekanik, perlu diberikan proses perlakuan panas. Hal ini perlu dilakukan untuk menghilangkan stress internal dan mencegah terjadinya retak atau cacat. Sifat mekanis ketangguhan adalah kemampuan material untuk menyerap energi sesaat sebelum terjadi fraktur pada struktur itu. Penelitian ini membahas tentang prediksi ketangguhan properti mekanik dengan memberikan pemanasan pada temperatur 800, 850 dan 9000C dan masing-masing specimen  diquenching dengan : air tawar, air laut dan minyak. Hasil penelitian menunjukkan bahwa terjadi peningkatan sifat ketangguhan dari efek temperatur dan media pendinginan yang digunakan. Data menunjukan pada 8000C dengan media quenching minyak nilai ketangguhan adalah 33,833 kg/cm2, serta suhu 9000C dengan quenching media air nilai ketangguhan adalah 40,8747 kg/cm2). Jadi semakin meningkat temperature perlakuan,  berpengaruh terhadap sifat ketangguhan impak bahan. Heat treatment is carried out by heating followed by anchoring and using quenching medium as cooling. Hardening is metal heating to austenite temperature, hold it at a temporary temperature and then cooled to cooling media such as water, oil, air, brine. To overcome the change of mechanical properties, need to be given process of heat treatment. This is to remove internal stress and prevent the occurrence of cracks or defects. The mechanical properties of toughness are the ability of the material to absorb energy without fracturing the structure. This study discusses the prediction of toughness of mechanical properties by heating at temperatures of 800, 850 and 9000C and each specimen quenching with: freshwater, seawater and oil. The results showed that there was an increase in the toughness properties of the temperature effect and the cooling medium used. The data show on 8000C with medium quenching oil the toughness value is 33.833 kg/cm2, and the temperature of 9000C with quenching medium water toughness value is 40.8747 kg/cm2). So the increasing of treatment temperature has influence to the material toughness


Sign in / Sign up

Export Citation Format

Share Document