scholarly journals ASAP 2: a pipeline and web server to analyze marker gene amplicon sequencing data automatically and consistently

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Renmao Tian ◽  
Behzad Imanian

Abstract Background Amplicon sequencing of marker genes such as 16S rDNA have been widely used to survey and characterize microbial community. However, the complex data analyses have required many interfering manual steps often leading to inconsistencies in results. Results Here, we have developed a pipeline, amplicon sequence analysis pipeline 2 (ASAP 2), to automate and glide through the processes without the usual manual inspections and user’s interference, for instance, in the detection of barcode orientation, selection of high-quality region of reads, and determination of resampling depth and many more. The pipeline integrates all the analytical processes such as importing data, demultiplexing, summarizing read profiles, trimming quality, denoising, removing chimeric sequences and making the feature table among others. The pipeline accepts multiple file formats as input including multiplexed or demultiplexed, paired-end or single-end, barcode inside or outside and raw or intermediate data (e.g. feature table). The outputs include taxonomic classification, alpha/beta diversity, community composition, ordination analysis and statistical tests. ASAP 2 supports merging multiple sequencing runs which helps integrate and compare data from different sources (public databases and collaborators). Conclusions Our pipeline minimizes hands-on interference and runs amplicon sequence variant (ASV)-based amplicon sequencing analysis automatically and consistently. Our web server assists researchers that have no access to high performance computer (HPC) or have limited bioinformatics skills. The pipeline and web server can be accessed at https://github.com/tianrenmaogithub/asap2 and https://hts.iit.edu/asap2, respectively.

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Marius Welzel ◽  
Anja Lange ◽  
Dominik Heider ◽  
Michael Schwarz ◽  
Bernd Freisleben ◽  
...  

Abstract Background Sequencing of marker genes amplified from environmental samples, known as amplicon sequencing, allows us to resolve some of the hidden diversity and elucidate evolutionary relationships and ecological processes among complex microbial communities. The analysis of large numbers of samples at high sequencing depths generated by high throughput sequencing technologies requires efficient, flexible, and reproducible bioinformatics pipelines. Only a few existing workflows can be run in a user-friendly, scalable, and reproducible manner on different computing devices using an efficient workflow management system. Results We present Natrix, an open-source bioinformatics workflow for preprocessing raw amplicon sequencing data. The workflow contains all analysis steps from quality assessment, read assembly, dereplication, chimera detection, split-sample merging, sequence representative assignment (OTUs or ASVs) to the taxonomic assignment of sequence representatives. The workflow is written using Snakemake, a workflow management engine for developing data analysis workflows. In addition, Conda is used for version control. Thus, Snakemake ensures reproducibility and Conda offers version control of the utilized programs. The encapsulation of rules and their dependencies support hassle-free sharing of rules between workflows and easy adaptation and extension of existing workflows. Natrix is freely available on GitHub (https://github.com/MW55/Natrix) or as a Docker container on DockerHub (https://hub.docker.com/r/mw55/natrix). Conclusion Natrix is a user-friendly and highly extensible workflow for processing Illumina amplicon data.


GigaScience ◽  
2020 ◽  
Vol 9 (12) ◽  
Author(s):  
Christina Weißbecker ◽  
Beatrix Schnabel ◽  
Anna Heintz-Buschart

Abstract Background Amplicon sequencing of phylogenetic marker genes, e.g., 16S, 18S, or ITS ribosomal RNA sequences, is still the most commonly used method to determine the composition of microbial communities. Microbial ecologists often have expert knowledge on their biological question and data analysis in general, and most research institutes have computational infrastructures to use the bioinformatics command line tools and workflows for amplicon sequencing analysis, but requirements of bioinformatics skills often limit the efficient and up-to-date use of computational resources. Results We present dadasnake, a user-friendly, 1-command Snakemake pipeline that wraps the preprocessing of sequencing reads and the delineation of exact sequence variants by using the favorably benchmarked and widely used DADA2 algorithm with a taxonomic classification and the post-processing of the resultant tables, including hand-off in standard formats. The suitability of the provided default configurations is demonstrated using mock community data from bacteria and archaea, as well as fungi. Conclusions By use of Snakemake, dadasnake makes efficient use of high-performance computing infrastructures. Easy user configuration guarantees flexibility of all steps, including the processing of data from multiple sequencing platforms. It is easy to install dadasnake via conda environments. dadasnake is available at https://github.com/a-h-b/dadasnake.


2020 ◽  
Author(s):  
Christina Weiβbecker ◽  
Beatrix Schnabel ◽  
Anna Heintz-Buschart

AbstractBackgroundAmplicon sequencing of phylogenetic marker genes, e.g. 16S, 18S or ITS rRNA sequences, is still the most commonly used method to determine the composition of microbial communities. Microbial ecologists often have expert knowledge on their biological question and data analysis in general, and most research institutes have computational infrastructures to employ the bioinformatics command line tools and workflows for amplicon sequencing analysis, but requirements of bioinformatics skills often limit the efficient and up-to-date use of computational resources.Resultsdadasnake wraps pre-processing of sequencing reads, delineation of exact sequence variants using the favorably benchmarked, widely-used the DADA2 algorithm, taxonomic classification and post-processing of the resultant tables, and hand-off in standard formats, into a user-friendly, one-command Snakemake pipeline. The suitability of the provided default configurations is demonstrated using mock-community data from bacteria and archaea, as well as fungi.ConclusionsBy use of Snakemake, dadasnake makes efficient use of high-performance computing infrastructures. Easy user configuration guarantees flexibility of all steps, including the processing of data from multiple sequencing platforms. dadasnake facilitates easy installation via conda environments. dadasnake is available at https://github.com/a-h-b/dadasnake.


2019 ◽  
Vol 86 (5) ◽  
Author(s):  
Shuchen Feng ◽  
Warish Ahmed ◽  
Sandra L. McLellan

ABSTRACT Quantitative PCR (qPCR) assays for human/sewage marker genes have demonstrated sporadic positive results in animal feces despite their high specificities to sewage and human feces. It is unclear whether these positive reactions are caused by true occurrences of microorganisms containing the marker gene (i.e., indicator organisms) or nonspecific amplification (false positive). The distribution patterns of human/sewage indicator organisms in animals have not been explored in depth, which is crucial for evaluating a marker gene’s true- or false-positive reactions. Here, we analyzed V6 region 16S rRNA gene sequences from 257 animal fecal samples and tested a subset of 184 using qPCR for human/sewage marker genes. Overall, specificities of human/sewage marker genes within sequencing data were 99.6% (BacV6-21), 96.9% (Lachno3), and 96.1% (HF183, indexed by its inferred V6 sequence). Occurrence of some true cross-reactions was associated with atypical compositions of organisms within the genera Blautia or Bacteroides. For human/sewage marker qPCR assays, specificities were 96.7% (HF183/Bac287R), 96.2% (BacV6-21), 95.6% (human Bacteroides [HB]), and 94.0% (Lachno3). Select assays duplexed with either Escherichia coli or Enterococcus spp. were also validated. Most of the positive qPCR results in animals were low level and, on average, 2 orders of magnitude lower than the copy numbers of E. coli and Enterococcus spp. The lower specificity in qPCR assays compared to sequencing data was mainly caused by amplification of sequences highly similar to the marker gene and not the occurrence of the exact marker sequence in animal fecal samples. IMPORTANCE Identifying human sources of fecal pollution is critical to remediate sanitation concerns. Large financial investments are required to address these concerns; therefore, a high level of confidence in testing results is needed. Human fecal marker genes validated in this study showed high specificity in both sequencing data and qPCR results. Human marker sequences were rarely found in individual animals, and in most cases, the animals had atypical microbial communities. Sequencing also revealed the presence of closely related organisms that could account for nonspecific amplification in certain assays. Both the true cross-reactions and the nonspecific amplification had low signals well below E. coli or Enterococcus levels and likely would not impact the assay’s ability to reliably detect human fecal pollution. No animal source had multiple human/sewage marker genes present; therefore, using a combination of marker genes would increase the confidence of human fecal pollution detection.


2020 ◽  
Vol 11 ◽  
Author(s):  
Paul E. Smith ◽  
Sinead M. Waters ◽  
Ruth Gómez Expósito ◽  
Hauke Smidt ◽  
Ciara A. Carberry ◽  
...  

Our understanding of complex microbial communities, such as those residing in the rumen, has drastically advanced through the use of high throughput sequencing (HTS) technologies. Indeed, with the use of barcoded amplicon sequencing, it is now cost effective and computationally feasible to identify individual rumen microbial genera associated with ruminant livestock nutrition, genetics, performance and greenhouse gas production. However, across all disciplines of microbial ecology, there is currently little reporting of the use of internal controls for validating HTS results. Furthermore, there is little consensus of the most appropriate reference database for analyzing rumen microbiota amplicon sequencing data. Therefore, in this study, a synthetic rumen-specific sequencing standard was used to assess the effects of database choice on results obtained from rumen microbial amplicon sequencing. Four DADA2 reference training sets (RDP, SILVA, GTDB, and RefSeq + RDP) were compared to assess their ability to correctly classify sequences included in the rumen-specific sequencing standard. In addition, two thresholds of phylogenetic bootstrapping, 50 and 80, were applied to investigate the effect of increasing stringency. Sequence classification differences were apparent amongst the databases. For example the classification of Clostridium differed between all databases, thus highlighting the need for a consistent approach to nomenclature amongst different reference databases. It is hoped the effect of database on taxonomic classification observed in this study, will encourage research groups across various microbial disciplines to develop and routinely use their own microbiome-specific reference standard to validate analysis pipelines and database choice.


Author(s):  
Andrew Krohn ◽  
Bo Stevens ◽  
Adam Robbins-Pianka ◽  
Matthew Belus ◽  
Gerard J Allan ◽  
...  

Diversity of complex microbial communities can be rapidly assessed by community amplicon sequencing of marker genes (e.g., 16S), often yielding many thousands of DNA sequences per sample. However, analysis of community amplicon sequencing data requires multiple computational steps which affect the outcome of a final data set. Here we use mock communities to describe the effects of parameter adjustments for raw sequence quality filtering, picking operational taxonomic units (OTUs), taxonomic assignment, and OTU table filtering as implemented in QIIME 1.9.1. We demonstrate a workflow optimization based upon this exploration which we also apply to environmental samples. We found that quality filtering of raw data and filtering of OTU tables had large effects on observed OTU diversity. While all taxonomy assigners performed with similar accuracy, an appropriate choice of similarity threshold for defining OTUs depended on the method used for OTU picking. Our “default” analysis in QIIME overestimated mock community diversity by at least a factor of ten, compared to the optimized analysis which correctly characterized the taxonomic composition of the mock communities while still overestimating OTU diversity by about a factor of two. Though observed relative abundances of mock community member taxa were approximately correct, most were still represented by multiple OTUs. Low-frequency OTUs conspecific to constituent mock community taxa were characterized by multiple substitution and indel errors and the presence of a low quality base call resulting in sequence truncation during quality filtering. Low quality base calls were observed at “G” positions most of the time, and were also associated with a preceding “TTT” trinucleotide motif. Environmental diversity estimates were reduced by about 40% from 2508 to 1533 OTUs when comparing output from the default and optimized workflows. We attribute this reduction in observed diversity to the removal of erroneous sequences from the data set. Our results indicate that both strict quality filtering of raw sequencing data and careful filtering of raw OTU tables are important steps for accurate estimation of microbial community diversity.


Author(s):  
Nicholas A Bokulich ◽  
Jai Ram Rideout ◽  
Evguenia Kopylova ◽  
Evan Bolyen ◽  
Jessica Patnode ◽  
...  

Background: Taxonomic classification of marker-gene (i.e., amplicon) sequences represents an important step for molecular identification of microorganisms. Results: We present three advances in our ability to assign and interpret taxonomic classifications of short marker gene sequences: two new methods for taxonomy assignment, which reduce runtime up to two-fold and achieve high precision genus-level assignments; an evaluation of classification methods that highlights differences in performance with different marker genes and at different levels of taxonomic resolution; and an extensible framework for evaluating and optimizing new classification methods, which we hope will serve as a model for standardized and reproducible bioinformatics methods evaluations. Conclusions: Our new methods are accessible in QIIME 1.9.0, and our evaluation framework will support ongoing optimization of classification methods to complement rapidly evolving short-amplicon sequencing and bioinformatics technologies. Static versions of all of the analysis notebooks generated with this framework, which contain all code and analysis results, can be viewed at http://bit.ly/srta-010.


2020 ◽  
Author(s):  
Marius Welzel ◽  
Anja Lange ◽  
Dominik Heider ◽  
Michael Schwarz ◽  
Bernd Freisleben ◽  
...  

AbstractSequencing of marker genes amplified from environmental samples, known as amplicon sequencing, allows us to resolve some of the hidden diversity and elucidate evolutionary relationships and ecological processes among complex microbial communities. The analysis of large numbers of samples at high sequencing depths generated by high throughput sequencing technologies requires effcient, flexible, and reproducible bioinformatics pipelines. Only a few existing workflows can be run in a user-friendly, scalable, and reproducible manner on different computing devices using an effcient workflow management system. We present Natrix, an open-source bioinformatics workflow for preprocessing raw amplicon sequencing data. The workflow contains all analysis steps from quality assessment, read assembly, dereplication, chimera detection, split-sample merging, sequence representative assignment (OTUs or ASVs) to the taxonomic assignment of sequence representatives. The workflow is written using Snakemake, a workflow management engine for developing data analysis workflows. In addition, Conda is used for version control. Thus, Snakemake ensures reproducibility and Conda offers version control of the utilized programs. The encapsulation of rules and their dependencies support hassle-free sharing of rules between workflows and easy adaptation and extension of existing workflows. Natrix is freely available on GitHub (https://github.com/MW55/Natrix).


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 7
Author(s):  
Sebastien Theil ◽  
Etienne Rifa

Bioinformatic tools for marker gene sequencing data analysis are continuously and rapidly evolving, thus integrating most recent techniques and tools is challenging. We present an R package for data analysis of 16S and ITS amplicons based sequencing. This workflow is based on several R functions and performs automatic treatments from fastq sequence files to diversity and differential analysis with statistical validation. The main purpose of this package is to automate bioinformatic analysis, ensure reproducibility between projects, and to be flexible enough to quickly integrate new bioinformatic tools or statistical methods. rANOMALY is an easy to install and customizable R package, that uses amplicon sequence variants (ASV) level for microbial community characterization. It integrates all assets of the latest bioinformatics methods, such as better sequence tracking, decontamination from control samples, use of multiple reference databases for taxonomic annotation, all main ecological analysis for which we propose advanced statistical tests, and a cross-validated differential analysis by four different methods. Our package produces ready to publish figures, and all of its outputs are made to be integrated in Rmarkdown code to produce automated reports.


Author(s):  
Nicholas A Bokulich ◽  
Jai Ram Rideout ◽  
Evguenia Kopylova ◽  
Evan Bolyen ◽  
Jessica Patnode ◽  
...  

Background: Taxonomic classification of marker-gene (i.e., amplicon) sequences represents an important step for molecular identification of microorganisms. Results: We present three advances in our ability to assign and interpret taxonomic classifications of short marker gene sequences: two new methods for taxonomy assignment, which reduce runtime up to two-fold and achieve high-precision genus-level assignments; an evaluation of classification methods that highlights differences in performance with different marker genes and at different levels of taxonomic resolution; and an extensible framework for evaluating and optimizing new classification methods, which we hope will serve as a model for standardized and reproducible bioinformatics methods evaluations. Conclusions: Our new methods are accessible in QIIME 1.9.0, and our evaluation framework will support ongoing optimization of classification methods to complement rapidly evolving short-amplicon sequencing and bioinformatics technologies. Static versions of all of the analysis notebooks generated with this framework, which contain all code and analysis results, can be viewed at http://bit.ly/srta-012 .


Sign in / Sign up

Export Citation Format

Share Document