scholarly journals MasterPATH: network analysis of functional genomics screening data

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Natalia Rubanova ◽  
Guillaume Pinna ◽  
Jeremie Kropp ◽  
Anna Campalans ◽  
Juan Pablo Radicella ◽  
...  

Abstract Background Functional genomics employs several experimental approaches to investigate gene functions. High-throughput techniques, such as loss-of-function screening and transcriptome profiling, allow to identify lists of genes potentially involved in biological processes of interest (so called hit list). Several computational methods exist to analyze and interpret such lists, the most widespread of which aim either at investigating of significantly enriched biological processes, or at extracting significantly represented subnetworks. Results Here we propose a novel network analysis method and corresponding computational software that employs the shortest path approach and centrality measure to discover members of molecular pathways leading to the studied phenotype, based on functional genomics screening data. The method works on integrated interactomes that consist of both directed and undirected networks – HIPPIE, SIGNOR, SignaLink, TFactS, KEGG, TransmiR, miRTarBase. The method finds nodes and short simple paths with significant high centrality in subnetworks induced by the hit genes and by so-called final implementers – the genes that are involved in molecular events responsible for final phenotypic realization of the biological processes of interest. We present the application of the method to the data from miRNA loss-of-function screen and transcriptome profiling of terminal human muscle differentiation process and to the gene loss-of-function screen exploring the genes that regulates human oxidative DNA damage recognition. The analysis highlighted the possible role of several known myogenesis regulatory miRNAs (miR-1, miR-125b, miR-216a) and their targets (AR, NR3C1, ARRB1, ITSN1, VAV3, TDGF1), as well as linked two major regulatory molecules of skeletal myogenesis, MYOD and SMAD3, to their previously known muscle-related targets (TGFB1, CDC42, CTCF) and also to a number of proteins such as C-KIT that have not been previously studied in the context of muscle differentiation. The analysis also showed the role of the interaction between H3 and SETDB1 proteins for oxidative DNA damage recognition. Conclusion The current work provides a systematic methodology to discover members of molecular pathways in integrated networks using functional genomics screening data. It also offers a valuable instrument to explain the appearance of a set of genes, previously not associated with the process of interest, in the hit list of each particular functional genomics screening.

2005 ◽  
Vol 125 (1-2) ◽  
pp. 119-126 ◽  
Author(s):  
Piotr Widlak ◽  
Monika Pietrowska ◽  
Joanna Lanuszewska

2021 ◽  
Vol 118 (11) ◽  
pp. e2020152118
Author(s):  
Valeska Helfinger ◽  
Florian Freiherr von Gall ◽  
Nina Henke ◽  
Michael M. Kunze ◽  
Tobias Schmid ◽  
...  

Reactive oxygen species (ROS) can cause cellular damage and promote cancer development. Besides such harmful consequences of overproduction of ROS, all cells utilize ROS for signaling purposes and stabilization of cell homeostasis. In particular, the latter is supported by the NADPH oxidase 4 (Nox4) that constitutively produces low amounts of H2O2. By that mechanism, Nox4 forces differentiation of cells and prevents inflammation. We hypothesize a constitutive low level of H2O2 maintains basal activity of cellular surveillance systems and is unlikely to be cancerogenic. Utilizing two different murine models of cancerogen-induced solid tumors, we found that deletion of Nox4 promotes tumor formation and lowers recognition of DNA damage. Nox4 supports phosphorylation of H2AX (γH2AX), a prerequisite of DNA damage recognition, by retaining a sufficiently low abundance of the phosphatase PP2A in the nucleus. The underlying mechanism is continuous oxidation of AKT by Nox4. Interaction of oxidized AKT and PP2A captures the phosphatase in the cytosol. Absence of Nox4 facilitates nuclear PP2A translocation and dephosphorylation of γH2AX. Simultaneously AKT is left phosphorylated. Thus, in the absence of Nox4, DNA damage is not recognized and the increased activity of AKT supports proliferation. The combination of both events results in genomic instability and promotes tumor formation. By identifying Nox4 as a protective source of ROS in cancerogen-induced cancer, we provide a piece of knowledge for understanding the role of moderate production of ROS in preventing the initiation of malignancies.


2014 ◽  
Vol 66 (11) ◽  
pp. 3019-3026 ◽  
Author(s):  
Luciana Daniela Lario ◽  
Pablo Botta ◽  
Paula Casati ◽  
Claudia Patricia Spampinato

2018 ◽  
Author(s):  
Natalia Rubanova ◽  
Anna Polesskaya ◽  
Anna Campalans ◽  
Guillaume Pinna ◽  
Jeremie Kropp ◽  
...  

AbstractFunctional genomics employs several experimental techniques to investigate gene functions. These techniques such as loss-of-function screening and transcriptome profiling performed in a high-throughput manner give as result a list of genes involved in the biological process of interest. There exist several computational methods for analysis and interpretation of the list. The most widespread methods aim at investigation of biological processes significantly represented in the list or at extracting significantly represented subnetworks. Here we present a new exploratory network analysis method that employs the shortest path approach and centrality measure to uncover members of active molecular pathways leading to the studied phenotype based on the results of functional genomics screening data. We present the method and we demonstrate what data can be retrieved by its application to the terminal muscle differentiation miRNA loss-of-function screening and transcriptomic profiling data and to the ‘druggable’ loss-of-function RNAi screening data of the DNA repair process.


2021 ◽  
Author(s):  
Kerry Silva McPherson ◽  
Dmitry Korzhnev

Cellular DNA damage response (DDR) is an extensive signaling network that orchestrates DNA damage recognition, repair and avoidance, cell cycle progression and cell death. DDR alternation is a hallmark of...


Blood ◽  
2017 ◽  
Vol 130 (24) ◽  
pp. 2631-2641 ◽  
Author(s):  
Brenton G. Mar ◽  
S. Haihua Chu ◽  
Josephine D. Kahn ◽  
Andrei V. Krivtsov ◽  
Richard Koche ◽  
...  

Key Points Alterations of SETD2, a histone 3 lysine 36 trimethyl (H3K36me3) transferase leads to resistance to DNA damaging-chemotherapy in leukemia. Low H3K36me3 levels impair DNA damage response and increase mutation rate, which may be targeted by H3K36me3 demethylase inhibition.


1994 ◽  
Vol 15 (11) ◽  
pp. 2559-2566 ◽  
Author(s):  
T.M.C.M. de Kok ◽  
D.M.F.A. Pachen ◽  
J.M.S. van Maanen ◽  
M.V.M. Lafleur ◽  
E.J. Westmijze ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document