scholarly journals Genomic variation among closely related Vibrio alginolyticus strains is located on mobile genetic elements

BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Cynthia Maria Chibani ◽  
Olivia Roth ◽  
Heiko Liesegang ◽  
Carolin Charlotte Wendling
2020 ◽  
Author(s):  
Cynthia Maria Chibani ◽  
Heiko Liesegang ◽  
Olivia Roth ◽  
Carolin Charlotte Wendling

Abstract Background Species of the genus Vibrio, one of the most diverse bacteria genera, have undergone niche adaptation followed by clonal expansion. Niche adaptation and ultimately the formation of ecotypes and speciation in this genus has been suggested to be mainly driven by horizontal gene transfer (HGT) through mobile genetic elements (MGEs). Our knowledge about the diversity and distribution of Vibrio MGEs is heavily biased towards human pathogens and our understanding of the distribution of core genomic signatures and accessory genes encoded on MGEs within specific Vibrio clades is still incomplete. We used nine different strains of the marine bacterium Vibrio alginolyticus isolated from pipefish in the Kiel-Fjord to perform a multiscale-comparative genomic approach that allowed us to investigate (1) those genomic signatures that characterize a habitat-specific ecotype and (2) the source of genomic variation within this ecotype. Results We found that the nine isolates from the Kiel-Fjord have a closed-pangenome and did not differ based on core-genomic signatures. Unique genomic regions and a unique repertoire of MGEs within the Kiel-Fjord isolates suggest that the acquisition of gene-blocks by HGT played an important role in the evolution of this ecotype. Additionally, we found that ~90% of the genomic variation among the nine isolates is encoded on MGEs, which supports ongoing theory that accessory genes are predominately located on MGEs and shared by HGT. Lastly, we could show that these nine isolates share a unique virulence and resistance profile which clearly separates them from all other investigated V. alginolyticus strains and suggests that these are habitat-specific genes, required for a successful colonization of the pipefish, the niche of this ecotype. Conclusion We conclude that all nine V. alginolyticus strains from the Kiel-Fjord belong to a unique ecotype, which we named the Kiel-alginolyticus ecotype. The low sequence variation of the core-genome in combination with the presence of MGE encoded relevant traits, as well as the presence of a suitable niche (here the pipefish), suggest, that this ecotype might have evolved from a clonal expansion following HGT driven niche-adaptation.


2020 ◽  
Author(s):  
Cynthia Maria Chibani ◽  
Olivia Roth ◽  
Heiko Liesegang ◽  
Carolin Charlotte Wendling

Abstract Background Species of the genus Vibrio, one of the most diverse bacteria genera, have undergone niche adaptation followed by clonal expansion. Niche adaptation and ultimately the formation of ecotypes and speciation in this genus has been suggested to be mainly driven by horizontal gene transfer (HGT) through mobile genetic elements (MGEs). Our knowledge about the diversity and distribution of Vibrio MGEs is heavily biased towards human pathogens and our understanding of the distribution of core genomic signatures and accessory genes encoded on MGEs within specific Vibrio clades is still incomplete. We used nine different strains of the marine bacterium Vibrio alginolyticus isolated from pipefish in the Kiel-Fjord to perform a multiscale-comparative genomic approach that allowed us to investigate (1) those genomic signatures that characterize a habitat-specific ecotype and (2) the source of genomic variation within this ecotype.Results We found that the nine isolates from the Kiel-Fjord have a closed-pangenome and did not differ based on core-genomic signatures. Unique genomic regions and a unique repertoire of MGEs within the Kiel-Fjord isolates suggest that the acquisition of gene-blocks by HGT played an important role in the evolution of this ecotype. Additionally, we found that ~90% of the genomic variation among the nine isolates is encoded on MGEs, which supports ongoing theory that accessory genes are predominately located on MGEs and shared by HGT. Lastly, we could show that these nine isolates share a unique virulence and resistance profile which clearly separates them from all other investigated V. alginolyticus strains and suggests that these are habitat-specific genes, required for a successful colonization of the pipefish, the niche of this ecotype. Conclusion We conclude that all nine V. alginolyticus strains from the Kiel-Fjord belong to a unique ecotype, which we named the Kiel-alginolyticus ecotype. The low sequence variation of the core-genome in combination with the presence of MGE encoded relevant traits, as well as the presence of a suitable niche (here the pipefish), suggest, that this ecotype might have evolved from a clonal expansion following HGT driven niche-adaptation.


Author(s):  
N.V. Bardukov ◽  
◽  
A.V. Feofilov ◽  
T.T. Glazko ◽  
V.I. Glazko ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pimlapas Leekitcharoenphon ◽  
Markus Hans Kristofer Johansson ◽  
Patrick Munk ◽  
Burkhard Malorny ◽  
Magdalena Skarżyńska ◽  
...  

AbstractThe emergence of antimicrobial resistance (AMR) is one of the biggest health threats globally. In addition, the use of antimicrobial drugs in humans and livestock is considered an important driver of antimicrobial resistance. The commensal microbiota, and especially the intestinal microbiota, has been shown to have an important role in the emergence of AMR. Mobile genetic elements (MGEs) also play a central role in facilitating the acquisition and spread of AMR genes. We isolated Escherichia coli (n = 627) from fecal samples in respectively 25 poultry, 28 swine, and 15 veal calf herds from 6 European countries to investigate the phylogeny of E. coli at country, animal host and farm levels. Furthermore, we examine the evolution of AMR in E. coli genomes including an association with virulence genes, plasmids and MGEs. We compared the abundance metrics retrieved from metagenomic sequencing and whole genome sequenced of E. coli isolates from the same fecal samples and farms. The E. coli isolates in this study indicated no clonality or clustering based on country of origin and genetic markers; AMR, and MGEs. Nonetheless, mobile genetic elements play a role in the acquisition of AMR and virulence genes. Additionally, an abundance of AMR was agreeable between metagenomic and whole genome sequencing analysis for several AMR classes in poultry fecal samples suggesting that metagenomics could be used as an indicator for surveillance of AMR in E. coli isolates and vice versa.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Yuan Wu ◽  
Lin Yang ◽  
Wen-Ge Li ◽  
Wen Zhu Zhang ◽  
Zheng Jie Liu ◽  
...  

Abstract Background Clade 5 Clostridioides difficile diverges significantly from the other clades and is therefore, attracting increasing attention due its great heterogeneity. In this study, we used third-generation sequencing techniques to sequence the complete whole genomes of three ST11 C. difficile isolates, RT078 and another two new ribotypes (RTs), obtained from three independent hospitalized elderly patients undergoing antibiotics treatment. Mobile genetic elements (MGEs), antibiotic-resistance, drug resistance genes, and virulent-related genes were analyzed and compared within these three isolates. Results Isolates 10,010 and 12,038 carried a distinct deletion in tcdA compared with isolate 21,062. Furthermore, all three isolates had identical deletions and point-mutations in tcdC, which was once thought to be a unique characteristic of RT078. Isolate 21,062 (RT078) had a unique plasmid, different numbers of transposons and genetic organization, and harboring special CRISPR spacers. All three isolates retained high-level sensitivity to 11 drugs and isolate 21,062 (RT078) carried distinct drug-resistance genes and loss of numerous flagellum-related genes. Conclusions We concluded that capillary electrophoresis based PCR-ribotyping is important for confirming RT078. Furthermore, RT078 isolates displayed specific MGEs, indicating an independent evolutionary process. In the further study, we could testify these findings with more RT078 isolates of divergent origins.


Sign in / Sign up

Export Citation Format

Share Document