scholarly journals A modified decision tree approach to improve the prediction and mutation discovery for drug resistance in Mycobacterium tuberculosis

BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Wouter Deelder ◽  
Gary Napier ◽  
Susana Campino ◽  
Luigi Palla ◽  
Jody Phelan ◽  
...  

Abstract Background Drug resistant Mycobacterium tuberculosis is complicating the effective treatment and control of tuberculosis disease (TB). With the adoption of whole genome sequencing as a diagnostic tool, machine learning approaches are being employed to predict M. tuberculosis resistance and identify underlying genetic mutations. However, machine learning approaches can overfit and fail to identify causal mutations if they are applied out of the box and not adapted to the disease-specific context. We introduce a machine learning approach that is customized to the TB setting, which extracts a library of genomic variants re-occurring across individual studies to improve genotypic profiling. Results We developed a customized decision tree approach, called Treesist-TB, that performs TB drug resistance prediction by extracting and evaluating genomic variants across multiple studies. The application of Treesist-TB to rifampicin (RIF), isoniazid (INH) and ethambutol (EMB) drugs, for which resistance mutations are known, demonstrated a level of predictive accuracy similar to the widely used TB-Profiler tool (Treesist-TB vs. TB-Profiler tool: RIF 97.5% vs. 97.6%; INH 96.8% vs. 96.5%; EMB 96.8% vs. 95.8%). Application of Treesist-TB to less understood second-line drugs of interest, ethionamide (ETH), cycloserine (CYS) and para-aminosalisylic acid (PAS), led to the identification of new variants (52, 6 and 11, respectively), with a high number absent from the TB-Profiler library (45, 4, and 6, respectively). Thereby, Treesist-TB had improved predictive sensitivity (Treesist-TB vs. TB-Profiler tool: PAS 64.3% vs. 38.8%; CYS 45.3% vs. 30.7%; ETH 72.1% vs. 71.1%). Conclusion Our work reinforces the utility of machine learning for drug resistance prediction, while highlighting the need to customize approaches to the disease-specific context. Through applying a modified decision learning approach (Treesist-TB) across a range of anti-TB drugs, we identified plausible resistance-encoding genomic variants with high predictive ability, whilst potentially overcoming the overfitting challenges that can affect standard machine learning applications.

2021 ◽  
Author(s):  
Pei Gao ◽  
Ming Huang ◽  
MD. Altaf-Ul-Amin ◽  
Naoaki Ono ◽  
Shigehiko Kanaya

Due to the close interaction between the host and the gut microbiota, the alterations in gut microbiota metabolism may therefore contribute to various diseases. How to use antibiotics more wisely in clinical practice is a promising task in the field of pathophysiology related to gut microbiota. The hope fueling this research is that the alteration of gut microbial communities are paralleled by their capacity on metabolomic from the combined perspective of microbiome and metabolomics. In order to reveal the impacts of antibiotics on microbiota-associated host metabolomic phenotypes, a feasible methodology should be well developed to assess the pervasive effects of antibiotics on the population structure of gut microbial communities. Our attempt starts from predicting specific resistance phenotypes of the individuals in isolation from the rest of the gut microbiota community, according to their resistant genotypes. Once resistance phenotypes of microbiome is determined, we integrated metabolomics with machine learning by applying various analysis algorithms to explore the relationship between the predicted resistance and metabolites, including what the microbial community is after medication, which microbes produce metabolites, and how these metabolites enrich.


2020 ◽  
Author(s):  
Gargi Datta ◽  
Nabeeh A Hasan ◽  
Michael Strong ◽  
Sonia M Leach

Background: The increasing incidence of drug resistance in tuberculosis and other infectious diseases poses an escalating cause for concern, emphasizing the urgent need to devise robust computational and molecular methods identify drug resistant strains. Although machine learning-based approaches using whole-genome sequence data can facilitate the inference of drug resistance, current implementations do not optimally take advantage of information in public databases and are not robust for small sample sizes and mixed attribute types. Results: In this paper we introduce the Composite MetaDistance method, an approach for feature selection and classification of high-dimensional, unbalanced datasets with mixed attribute features from various data sources. We introduce a mixed-attribute, multi-view distance function to calculate distances between samples, with optimal handling of nominal features and different feature views. We also introduce a novel feature set for drug resistance prediction in Mycobacterium tuberculosis, using data from diverse sources. We compare the performance of Composite MetaDistance to multiple machine learning algorithms for Mycobacterium tuberculosis drug resistance prediction for three drugs. Composite MetaDistance consistently outperforms existing algorithms for small sample training sets, and performs as well as other algorithms for training sets with larger sample sizes. Conclusion: The feature set formulation introduced in this paper is utilizes mutational and publicly available information for each gene, and is much richer than ever devised previously. The prediction algorithm, Composite MetaDistance, is sample size agnostic and robust especially given small sample sizes. Proper handling of nominal features improves performance even with a very small number of nominal features. We expect Composite MetaDistance to be even more robust for datasets with a higher percentage of nominal features. The algorithm is application independent and can be used for any mixed attribute dataset.


2017 ◽  
Author(s):  
Sabrina Jaeger ◽  
Simone Fulle ◽  
Samo Turk

Inspired by natural language processing techniques we here introduce Mol2vec which is an unsupervised machine learning approach to learn vector representations of molecular substructures. Similarly, to the Word2vec models where vectors of closely related words are in close proximity in the vector space, Mol2vec learns vector representations of molecular substructures that are pointing in similar directions for chemically related substructures. Compounds can finally be encoded as vectors by summing up vectors of the individual substructures and, for instance, feed into supervised machine learning approaches to predict compound properties. The underlying substructure vector embeddings are obtained by training an unsupervised machine learning approach on a so-called corpus of compounds that consists of all available chemical matter. The resulting Mol2vec model is pre-trained once, yields dense vector representations and overcomes drawbacks of common compound feature representations such as sparseness and bit collisions. The prediction capabilities are demonstrated on several compound property and bioactivity data sets and compared with results obtained for Morgan fingerprints as reference compound representation. Mol2vec can be easily combined with ProtVec, which employs the same Word2vec concept on protein sequences, resulting in a proteochemometric approach that is alignment independent and can be thus also easily used for proteins with low sequence similarities.


2019 ◽  
Author(s):  
Oskar Flygare ◽  
Jesper Enander ◽  
Erik Andersson ◽  
Brjánn Ljótsson ◽  
Volen Z Ivanov ◽  
...  

**Background:** Previous attempts to identify predictors of treatment outcomes in body dysmorphic disorder (BDD) have yielded inconsistent findings. One way to increase precision and clinical utility could be to use machine learning methods, which can incorporate multiple non-linear associations in prediction models. **Methods:** This study used a random forests machine learning approach to test if it is possible to reliably predict remission from BDD in a sample of 88 individuals that had received internet-delivered cognitive behavioral therapy for BDD. The random forest models were compared to traditional logistic regression analyses. **Results:** Random forests correctly identified 78% of participants as remitters or non-remitters at post-treatment. The accuracy of prediction was lower in subsequent follow-ups (68%, 66% and 61% correctly classified at 3-, 12- and 24-month follow-ups, respectively). Depressive symptoms, treatment credibility, working alliance, and initial severity of BDD were among the most important predictors at the beginning of treatment. By contrast, the logistic regression models did not identify consistent and strong predictors of remission from BDD. **Conclusions:** The results provide initial support for the clinical utility of machine learning approaches in the prediction of outcomes of patients with BDD. **Trial registration:** ClinicalTrials.gov ID: NCT02010619.


Author(s):  
Jeffrey G Klann ◽  
Griffin M Weber ◽  
Hossein Estiri ◽  
Bertrand Moal ◽  
Paul Avillach ◽  
...  

Abstract Introduction The Consortium for Clinical Characterization of COVID-19 by EHR (4CE) is an international collaboration addressing COVID-19 with federated analyses of electronic health record (EHR) data. Objective We sought to develop and validate a computable phenotype for COVID-19 severity. Methods Twelve 4CE sites participated. First we developed an EHR-based severity phenotype consisting of six code classes, and we validated it on patient hospitalization data from the 12 4CE clinical sites against the outcomes of ICU admission and/or death. We also piloted an alternative machine-learning approach and compared selected predictors of severity to the 4CE phenotype at one site. Results The full 4CE severity phenotype had pooled sensitivity of 0.73 and specificity 0.83 for the combined outcome of ICU admission and/or death. The sensitivity of individual code categories for acuity had high variability - up to 0.65 across sites. At one pilot site, the expert-derived phenotype had mean AUC 0.903 (95% CI: 0.886, 0.921), compared to AUC 0.956 (95% CI: 0.952, 0.959) for the machine-learning approach. Billing codes were poor proxies of ICU admission, with as low as 49% precision and recall compared to chart review. Discussion We developed a severity phenotype using 6 code classes that proved resilient to coding variability across international institutions. In contrast, machine-learning approaches may overfit hospital-specific orders. Manual chart review revealed discrepancies even in the gold-standard outcomes, possibly due to heterogeneous pandemic conditions. Conclusion We developed an EHR-based severity phenotype for COVID-19 in hospitalized patients and validated it at 12 international sites.


2021 ◽  
Vol 7 (1) ◽  
pp. 16-19
Author(s):  
Owes Khan ◽  
Geri Shahini ◽  
Wolfram Hardt

Automotive technologies are ever-increasinglybecoming digital. Highly autonomous driving togetherwith digital E/E control mechanisms include thousandsof software applications which are called as software components. Together with the industry requirements, and rigorous software development processes, mappingof components as a software pool becomes very difficult.This article analyses and discusses the integration possiblilities of machine learning approaches to our previously introduced concept of mapping of software components through a common software pool.


2020 ◽  
Vol 34 (01) ◽  
pp. 598-605
Author(s):  
Chaoran Cheng ◽  
Fei Tan ◽  
Zhi Wei

We consider the problem of Named Entity Recognition (NER) on biomedical scientific literature, and more specifically the genomic variants recognition in this work. Significant success has been achieved for NER on canonical tasks in recent years where large data sets are generally available. However, it remains a challenging problem on many domain-specific areas, especially the domains where only small gold annotations can be obtained. In addition, genomic variant entities exhibit diverse linguistic heterogeneity, differing much from those that have been characterized in existing canonical NER tasks. The state-of-the-art machine learning approaches heavily rely on arduous feature engineering to characterize those unique patterns. In this work, we present the first successful end-to-end deep learning approach to bridge the gap between generic NER algorithms and low-resource applications through genomic variants recognition. Our proposed model can result in promising performance without any hand-crafted features or post-processing rules. Our extensive experiments and results may shed light on other similar low-resource NER applications.


IoT ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 551-604
Author(s):  
Damien Warren Fernando ◽  
Nikos Komninos ◽  
Thomas Chen

This survey investigates the contributions of research into the detection of ransomware malware using machine learning and deep learning algorithms. The main motivations for this study are the destructive nature of ransomware, the difficulty of reversing a ransomware infection, and how important it is to detect it before infecting a system. Machine learning is coming to the forefront of combatting ransomware, so we attempted to identify weaknesses in machine learning approaches and how they can be strengthened. The threat posed by ransomware is exceptionally high, with new variants and families continually being found on the internet and dark web. Recovering from ransomware infections is difficult, given the nature of the encryption schemes used by them. The increase in the use of artificial intelligence also coincides with this boom in ransomware. The exploration into machine learning and deep learning approaches when it comes to detecting ransomware poses high interest because machine learning and deep learning can detect zero-day threats. These techniques can generate predictive models that can learn the behaviour of ransomware and use this knowledge to detect variants and families which have not yet been seen. In this survey, we review prominent research studies which all showcase a machine learning or deep learning approach when detecting ransomware malware. These studies were chosen based on the number of citations they had by other research. We carried out experiments to investigate how the discussed research studies are impacted by malware evolution. We also explored the new directions of ransomware and how we expect it to evolve in the coming years, such as expansion into IoT (Internet of Things), with IoT being integrated more into infrastructures and into homes.


Sign in / Sign up

Export Citation Format

Share Document