scholarly journals Microbial community structure and the relationship with soil carbon and nitrogen in an original Korean pine forest of Changbai Mountain, China

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Minghui Liu ◽  
Xin Sui ◽  
Yanbo Hu ◽  
Fujuan Feng

Abstract Background The broad-leaved Korean pine mixed forest is an important and typical component of a global temperate forest. Soil microbes are the main driver of biogeochemical cycling in this forest ecosystem and have complex interactions with carbon (C) and nitrogen (N) components in the soil. Results We investigated the vertical soil microbial community structure in a primary Korean pine-broadleaved mixed forest in Changbai Mountain (from 699 to 1177 m) and analyzed the relationship between the microbial community and both C and N components in the soil. The results showed that the total phospholipid fatty acid (PLFA) of soil microbes and Gram-negative bacteria (G-), Gram-positive bacteria (G+), fungi (F), arbuscular mycorrhizal fungi (AMF), and Actinomycetes varied significantly (p < 0.05) at different sites (elevations). The ratio of fungal PLFAs to bacterial PLFAs (F/B) was higher at site H1, and H2. The relationship between microbial community composition and geographic distance did not show a distance-decay pattern. The coefficients of variation for bacteria were maximum among different sites (elevations). Total soil organic carbon (TOC), total nitrogen (TN), soil water content (W), and the ratio of breast-height basal area of coniferous trees to that of broad-leaved tree species (RBA) were the main contributors to the variation observed in each subgroup of microbial PLFAs. The structure equation model showed that TOC had a significant direct effect on bacterial biomass and an indirect effect upon bacterial and fungal biomass via soil readily oxidized organic carbon (ROC). No significant relationship was observed between soil N fraction and the biomass of fungi and bacteria. Conclusion The total PLFAs (tPLFA) and PLFAs of soil microbes, including G-, G+, F, AMF, and Actinomycetes, were significantly affected by elevation. Bacteria were more sensitive to changes in elevation than other microbes. Environmental heterogeneity was the main factor affecting the geographical distribution pattern of microbial community structure. TOC, TN, W and RBA were the main driving factors for the change in soil microbial biomass. C fraction was the main factor affecting the biomass of fungi and bacteria and ROC was one of the main sources of the microbial-derived C pool.

2011 ◽  
Vol 24 (2) ◽  
pp. 154-164 ◽  
Author(s):  
Jackie Aislabie ◽  
James Bockheim ◽  
Malcolm Mcleod ◽  
David Hunter ◽  
Bryan Stevenson ◽  
...  

AbstractFour pedons on each of four drift sheets in the Lake Wellman area of the Darwin Mountains were sampled for chemical and microbial analyses. The four drifts, Hatherton, Britannia, Danum, and Isca, ranged from early Holocene (10 ka) to mid-Quaternary (c. 900 ka). The soil properties of weathering stage, salt stage, and depths of staining, visible salts, ghosts, and coherence increase with drift age. The landforms contain primarily high-centred polygons with windblown snow in the troughs. The soils are dominantly complexes of Typic Haplorthels and Typic Haploturbels. The soils were dry and alkaline with low levels of organic carbon, nitrogen and phosphorus. Electrical conductivity was high accompanied by high levels of water soluble anions and cations (especially calcium and sulphate in older soils). Soil microbial biomass, measured as phospholipid fatty acids, and numbers of culturable heterotrophic microbes, were low, with highest levels detected in less developed soils from the Hatherton drift. The microbial community structure of the Hatherton soil also differed from that of the Britannia, Danum and Isca soils. Ordination revealed the soil microbial community structure was influenced by soil development and organic carbon.


2017 ◽  
Vol 63 (No. 12) ◽  
pp. 574-580 ◽  
Author(s):  
Ma Zhongyou ◽  
Xie Yue ◽  
Zhu Lin ◽  
Cheng Liang ◽  
Xiao Xin ◽  
...  

Soil microorganisms are critical to maintain soil function, enhance plant health and increase crop yields. This study investigated the effects of organic matter on soil microbial community and assessed which of soil microbes were in positive correlation to maize yields. The results showed that different fertilizer treatments shaped specific microbial communities in the same soils. The most abundant beneficial soil microbes were found in treatments with organic fertilizer produced from cattle manure, return of wheat straw and 70% NPK admixture fertilizers treatment. The correlation analysis revealed that maize yields were in no correlation both to the shifts of soil microbial community structure and to the number of sequences or operational taxonomic units (OTUs) in soil microbes. However, maize yields were in positive correlation to microbial community structure shifts at the species level. 35 bacteria OTUs from 19 orders in 14 classes in 9 phyla were in positive correlation to yields of maize, while in fungi only one OTU<sub>25</sub> belonging to Sordariales was in positive correlation. Our results indicate that the long-term application of organic and inorganic amendments could enrich the soil bacterial and fungal community and promote its diversity.


HortScience ◽  
2021 ◽  
pp. 1-7
Author(s):  
Haiyan Wang ◽  
Rong Zhang ◽  
Weitao Jiang ◽  
Yunfei Mao ◽  
Xuesen Chen ◽  
...  

The study here aimed to investigate the effects of pre-winter ditching and freezing-thawing on soil microbial structure in different soil layers of old apple orchards. A total of 30 samples were obtained from 3 Nov. 2016 to 9 Mar. 2017. The relative abundance, alpha diversity, community structure of fungi, and the relationship between environmental factors and microbial community structure were analyzed, and the greenhouse experiments were used for further verification. Results showed that the number of actinomycete and total bacterial colonies decreased, whereas the number of fungi sustained decreased, resulting in a higher bacteria/fungi ratio. The percentage of Fusarium initially decreased, then later increased by 11.38%, 3.469%, 2.35%, 2.29%, and 3.09%. However, Fusarium levels were still 9% lower on 9 Mar. 2017 that on 3 Nov. 2016. Both the abundance and diversity of the community were higher in the upper soil than in the lower. The main environmental factor contributing to the percentage of Fusarium change was average temperature (AT), although highest temperature (HT) and water content (WC) also had an impact. The Malus hupehensis Rehd. seedlings growing in lower soil were more vigorous than that in upper soil. In sum, pre-winter ditching and freezing-thawing in old apple orchards can reduce the abundance percentage of harmful Fusarium and promote the growth of M. hupehensis Rehd. seedlings.


Sign in / Sign up

Export Citation Format

Share Document