scholarly journals Application of Bacillus thuringiensis strains with conjugal and mobilizing capability drives gene transmissibility within Bacillus cereus group populations in confined habitats

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiaomin Hu ◽  
Doudou Huang ◽  
Joseph Ogalo ◽  
Peiling Geng ◽  
Zhiming Yuan ◽  
...  

Abstract Background Bacillus thuringiensis bacteria share similar genetic, physiological, and biochemical characteristics with other members of the Bacillus cereus group. Their diversity and entomopathogenic origin are related to their mobile genetic elements. However, the effects of wide-spread application of B. thuringiensis-based pesticides on genetically related B. cereus group populations present in the environment remain poorly understood. Results We first identified pBMB76 from B. thuringiensis tenebrionis as a new conjugative plasmid. Mixed mating experiments suggested that pBMB76 may compete with pHT73, another known conjugative plasmid. Applications of single (tenebrionis 4AA1 and kurstaki HD73 carrying pBMB76 and pHT73, respectively) and mixed (4AA1 + HD73) B. thuringiensis strains were performed in confined plot habitats (soil and leaf) over two planting seasons. In total, 684 B. cereus group isolates were randomly selected from different treatment sets, and the transmissibility and occurrence rate of potential conjugative plasmids were surveyed. Results showed that the percentage of isolates with plasmid mobility was markedly enhanced in the B. thuringiensis-sprayed groups. Furthermore, we performed multi-locus sequence typing (MLST) for a subset of 291 isolates, which indicated that the dominant sequence types in the treated habitats were identical or related to the corresponding sprayed formulations. Conclusions The application of B. thuringiensis strains with conjugal and mobilizing capability drove gene transmissibility within the B. cereus group populations in confined habitats and potentially modified the population structure.

2015 ◽  
Vol 3 (5) ◽  
Author(s):  
Ivan Erill ◽  
Steven M. Caruso

The genomes of two double-stranded DNA (dsDNA) bacteriophages isolated on Bacillus thuringiensis show similarity to previously sequenced phages and provide evidence of the mosaicism of phage genomes.


2007 ◽  
Vol 53 (6) ◽  
pp. 673-687 ◽  
Author(s):  
G.T. Vilas-Bôas ◽  
A.P.S. Peruca ◽  
O.M.N. Arantes

Three species of the Bacillus cereus group (Bacillus cereus, Bacillus anthracis , and Bacillus thuringiensis ) have a marked impact on human activity. Bacillus cereus and B. anthracis are important pathogens of mammals, including humans, and B. thuringiensis is extensively used in the biological control of insects. The microbiological, biochemical, and genetic characteristics of these three species are reviewed, together with a discussion of several genomic studies conducted on strains of B. cereus group. Using bacterial systematic concepts, we speculate that to understand the taxonomic relationship within this group of bacteria, special attention should be devoted also to the ecology and the population genetics of these species.


2006 ◽  
Vol 69 (8) ◽  
pp. 2002-2006 ◽  
Author(s):  
MARGARET A. JUERGENSMEYER ◽  
BRUCE A. GINGRAS ◽  
LAWRENCE RESTAINO ◽  
ELON W. FRAMPTON

A selective and differential plating medium, R & F anthracis chromogenic agar (ACA), has been developed for isolating and identifying presumptive colonies of Bacillus anthracis. ACA contains the chromogenic substrate 5-bromo-4-chloro-3-indoxyl-choline phosphate that upon hydrolysis yields teal (blue green) colonies indicating the presence of phosphatidylcholinespecific phospholipase C (PC-PLC) activity. Among seven Bacillus species tested on ACA, only members of the Bacillus cereus group (B. anthracis, B. cereus, and B. thuringiensis) produced teal colonies (PC-PLC positive) having cream rings. Examination of colony morphology in 18 pure culture strains of B. anthracis (15 ATCC strains plus AMES-1-RIID, ANR-1, and AMED-RIID), with one exception, required 48 h at 35 to 37°C for significant color production, whereas only 24 h was required for B. cereus and B. thuringiensis. This differential rate of PC-PLC synthesis in B. anthracis (due to the truncated plcR gene and PlcR regulator in B. anthracis) allowed for the rapid differentiation on ACA of presumptive colonies of B. anthracis from B. cereus and B. thuringiensis in both pure and mixed cultures. Effective recovery of B. anthracis from a variety of matrices having both high (soil and sewage) and low microbial backgrounds (cloth, paper, and blood) spiked with B. anthracis ANR-1 spores suggests the probable utility of ACA plating for B. anthracis recovery in a diversity of applications.


2016 ◽  
Vol 10 (29) ◽  
pp. 1094-1103 ◽  
Author(s):  
Bouali Waffa ◽  
Malek Fadila ◽  
Sahin Fikrettin ◽  
Eddine Abdelouahid Djamel

2021 ◽  
Vol 9 (4) ◽  
Author(s):  
Angelica Bianco ◽  
Loredana Capozzi ◽  
Angela Miccolupo ◽  
Simona Iannetti ◽  
Maria Luisa Danzetta ◽  
...  

Members of Bacillus cereus group are important food contaminants and they are of relevant interest in food safety and public heath due to their ability to cause two distinct forms of food poisoning, emetic and diarrhoeal syndrome. In the present study, 90 strains of B. cereus isolated from dairy products, have been typed using Multilocus Sequence Typing (MLST) analysis and investigated for the occurrence of 10 enterotoxigenic genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK, entFM, entS and bceT) and one emetogenic gene (ces), to determine their genetic diversity. A total of 58 sequence types were identified and among these 17 were signalled as new profiles. Among the virulence genes, the majority of our strains carried the entS (92%), entFM (86%), nhe (82%) and cytK (72%) genes. All remaining genes were identified in at least one strain with different prevalence, stressing the genetic diversity, how even the different grade of pathogenicity of B. cereus isolated from dairy products.


Sign in / Sign up

Export Citation Format

Share Document