scholarly journals Expression of B-class MADS-box genes in response to variations in photoperiod is associated with chasmogamous and cleistogamous flower development in Viola philippica

2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Qiaoxia Li ◽  
Qingdi Huo ◽  
Juan Wang ◽  
Jing Zhao ◽  
Kun Sun ◽  
...  
2014 ◽  
Vol 27 (2) ◽  
pp. 79-94 ◽  
Author(s):  
Raphael Ricon de Oliveira ◽  
Igor Cesarino ◽  
Paulo Mazzafera ◽  
Marcelo Carnier Dornelas

Plant Biology ◽  
2003 ◽  
Vol 5 (1) ◽  
pp. 16-22 ◽  
Author(s):  
F. Fornara ◽  
G. Marziani ◽  
L. Mizzi ◽  
M. Kater ◽  
L. Colombo

2010 ◽  
Vol 93 (1) ◽  
pp. 65-75 ◽  
Author(s):  
QIONG ZHAO ◽  
ALLISON L. WEBER ◽  
MICHAEL D. MCMULLEN ◽  
KATHERINE GUILL ◽  
JOHN DOEBLEY

SummaryMADS-box genes encode transcription factors that are key regulators of plant inflorescence and flower development. We examined DNA sequence variation in 32 maize MADS-box genes and 32 randomly chosen maize loci and investigated their involvement in maize domestication and improvement. Using neutrality tests and a test based on coalescent simulation of a bottleneck model, we identified eight MADS-box genes as putative targets of the artificial selection associated with domestication. According to neutrality tests, one additional MADS-box gene appears to have been under selection during modern agricultural improvement of maize. For random loci, two genes were indicated as targets of selection during domestication and four additional genes were indicated to be candidate-selected loci for maize improvement. These results suggest that MADS-box genes were more frequent targets of selection during domestication than genes chosen at random from the genome.


2021 ◽  
Vol 22 (13) ◽  
pp. 7025
Author(s):  
Francesca Lucibelli ◽  
Maria Carmen Valoroso ◽  
Günter Theißen ◽  
Susanne Nolden ◽  
Mariana Mondragon-Palomino ◽  
...  

The molecular basis of orchid flower development is accomplished through a specific regulatory program in which the class B MADS-box AP3/DEF genes play a central role. In particular, the differential expression of four class B AP3/DEF genes is responsible for specification of organ identities in the orchid perianth. Other MADS-box genes (AGL6 and SEP-like) enrich the molecular program underpinning the orchid perianth development, resulting in the expansion of the original “orchid code” in an even more complex gene regulatory network. To identify candidates that could interact with the AP3/DEF genes in orchids, we conducted an in silico differential expression analysis in wild-type and peloric Phalaenopsis. The results suggest that a YABBY DL-like gene could be involved in the molecular program leading to the development of the orchid perianth, particularly the labellum. Two YABBY DL/CRC homologs are present in the genome of Phalaenopsis equestris, PeDL1 and PeDL2, and both express two alternative isoforms. Quantitative real-time PCR analyses revealed that both genes are expressed in column and ovary. In addition, PeDL2 is more strongly expressed the labellum than in the other tepals of wild-type flowers. This pattern is similar to that of the AP3/DEF genes PeMADS3/4 and opposite to that of PeMADS2/5. In peloric mutant Phalaenopsis, where labellum-like structures substitute the lateral inner tepals, PeDL2 is expressed at similar levels of the PeMADS2-5 genes, suggesting the involvement of PeDL2 in the development of the labellum, together with the PeMADS2-PeMADS5 genes. Although the yeast two-hybrid analysis did not reveal the ability of PeDL2 to bind the PeMADS2-PeMADS5 proteins directly, the existence of regulatory interactions is suggested by the presence of CArG-boxes and other MADS-box transcription factor binding sites within the putative promoter of the orchid DL2 gene.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2825
Author(s):  
Mohammed A. Sayed ◽  
Mohamed Allam ◽  
Quinn Kalby Heck ◽  
Ieva Urbanavičiūtė ◽  
Twan Rutten ◽  
...  

MADS-box transcription factors are crucial regulators of inflorescence and flower development in plants. Therefore, the recent interest in this family has received much attention in plant breeding programs due to their impact on plant development and inflorescence architecture. The aim of this study was to investigate the role of HvMADS-box genes in lateral spikelet development in barley (Hordeum vulgare L.). A set of 30 spike-contrasting barley lines were phenotypically and genotypically investigated under controlled conditions. We detected clear variations in the spike and spikelet development during the developmental stages among the tested lines. The lateral florets in the deficiens and semi-deficiens lines were more reduced than in two-rowed cultivars except cv. Kristina. Interestingly, cv. Kristina, int-h.43 and int-i.39 exhibited the same behavior as def.5, def.6, semi-def.1, semi-def.8 regarding development and showed reduced lateral florets size. In HOR1555, HOR7191 and HOR7041, the lateral florets continued their development, eventually setting seeds. In contrast, lateral florets in two-rowed barley stopped differentiating after the awn primordia stage giving rise to lateral floret sterility. At harvest, the lines tested showed large variation for all central and lateral spikelet-related traits. Phylogenetic analysis showed that more than half of the 108 MADS-box genes identified are highly conserved and are expressed in different barley tissues. Re-sequence analysis of a subset of these genes showed clear polymorphism in either SNPs or in/del. Variation in HvMADS56 correlated with altered lateral spikelet morphology. This suggests that HvMADS56 plays an important role in lateral spikelet development in barley.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhongyuan Lin ◽  
Dingding Cao ◽  
Rebecca Njeri Damaris ◽  
Pingfang Yang

Abstract Background Sacred lotus (Nelumbo nucifera) is a vital perennial aquatic ornamental plant. Its flower shape determines the horticultural and ornamental values. However, the mechanisms underlying lotus flower development are still elusive. MADS-box transcription factors are crucial in various features of plant development, especially in floral organogenesis and specification. It is still unknown how the MADS-box transcription factors regulate the floral organogenesis in lotus. Results To obtain a comprehensive insight into the functions of MADS-box genes in sacred lotus flower development, we systematically characterized members of this gene family based on the available genome information. A total of 44 MADS-box genes were identified, of which 16 type I and 28 type II genes were categorized based on the phylogenetic analysis. Furthermore, the structure of MADS-box genes and their expressional patterns were also systematically analyzed. Additionally, subcellular localization analysis showed that they are mainly localized in the nucleus, of which a SEPALLATA3 (SEP3) homolog NnMADS14 was proven to be involved in the floral organogenesis. Conclusion These results provide some fundamental information about the MADS-box gene family and their functions, which might be helpful in not only understanding the mechanisms of floral organogenesis but also breeding of high ornamental value cultivars in lotus.


Genetics ◽  
1995 ◽  
Vol 140 (1) ◽  
pp. 345-356 ◽  
Author(s):  
M D Purugganan ◽  
S D Rounsley ◽  
R J Schmidt ◽  
M F Yanofsky

Abstract Floral homeotic genes that control the specification of meristem and organ identity in developing flowers have been isolated from both Arabidopsis thaliana and Antirrhinum majus. Most of these genes belong to a large family of regulatory genes and possess a characteristic DNA binding domain known as the MADS-box. Members of this gene family display primarily floral-specific expression and are homologous to transcription factors found in several animal and fungal species. Molecular evolutionary analyses reveal that there are appreciable differences in the substitution rates between different domains of these plant MADS-box genes. Phylogenetic analyses also demonstrate that members of the plant MADS-box gene family are organized into several distinct gene groups: the AGAMOUS, APETALA3/PISTILLATA and APETALA1/AGL9 groups. The shared evolutionary history of members of a gene group appear to reflect the distinct functional roles these MADS-box genes play in flower development. Molecular evolutionary analyses also suggest that these different gene groups were established in a relatively short span of evolutionary time and that the various floral homeotic loci originated even before the appearance of the flowering plants.


Sign in / Sign up

Export Citation Format

Share Document