lateral spikelet
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 0)

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2825
Author(s):  
Mohammed A. Sayed ◽  
Mohamed Allam ◽  
Quinn Kalby Heck ◽  
Ieva Urbanavičiūtė ◽  
Twan Rutten ◽  
...  

MADS-box transcription factors are crucial regulators of inflorescence and flower development in plants. Therefore, the recent interest in this family has received much attention in plant breeding programs due to their impact on plant development and inflorescence architecture. The aim of this study was to investigate the role of HvMADS-box genes in lateral spikelet development in barley (Hordeum vulgare L.). A set of 30 spike-contrasting barley lines were phenotypically and genotypically investigated under controlled conditions. We detected clear variations in the spike and spikelet development during the developmental stages among the tested lines. The lateral florets in the deficiens and semi-deficiens lines were more reduced than in two-rowed cultivars except cv. Kristina. Interestingly, cv. Kristina, int-h.43 and int-i.39 exhibited the same behavior as def.5, def.6, semi-def.1, semi-def.8 regarding development and showed reduced lateral florets size. In HOR1555, HOR7191 and HOR7041, the lateral florets continued their development, eventually setting seeds. In contrast, lateral florets in two-rowed barley stopped differentiating after the awn primordia stage giving rise to lateral floret sterility. At harvest, the lines tested showed large variation for all central and lateral spikelet-related traits. Phylogenetic analysis showed that more than half of the 108 MADS-box genes identified are highly conserved and are expressed in different barley tissues. Re-sequence analysis of a subset of these genes showed clear polymorphism in either SNPs or in/del. Variation in HvMADS56 correlated with altered lateral spikelet morphology. This suggests that HvMADS56 plays an important role in lateral spikelet development in barley.


Author(s):  
Ravi Koppolu ◽  
Guojing Jiang ◽  
Sara G. Milner ◽  
Quddoos H. Muqaddasi ◽  
Twan Rutten ◽  
...  

Abstract Key message Spikelet indeterminacy and supernumerary spikelet phenotypes in barley multiflorus2.b mutant show polygenic inheritance. Genetic analysis of multiflorus2.b revealed major QTLs for spikelet determinacy and supernumerary spikelet phenotypes on 2H and 6H chromosomes. Abstract Understanding the genetic basis of yield forming factors in small grain cereals is of extreme importance, especially in the wake of stagnation of further yield gains in these crops. One such yield forming factor in these cereals is the number of grain-bearing florets produced per spikelet. Wild-type barley (Hordeum vulgare L.) spikelets are determinate structures, and the spikelet axis (rachilla) degenerates after producing single floret. In contrast, the rachilla of wheat (Triticum ssp.) spikelets, which are indeterminate, elongates to produce up to 12 florets. In our study, we characterized the barley spikelet determinacy mutant multiflorus2.b (mul2.b) that produced up to three fertile florets on elongated rachillae of lateral spikelets. Apart from the lateral spikelet indeterminacy (LS-IN), we also characterized the supernumerary spikelet phenotype in the central spikelets (CS-SS) of mul2.b. Through our phenotypic and genetic analyses, we identified two major QTLs on chromosomes 2H and 6H, and two minor QTLs on 3H for the LS-IN phenotype. For, the CS-SS phenotype, we identified one major QTL on 6H, and a minor QTL on 5H chromosomes. Notably, the 6H QTLs for CS-SS and LS-IN phenotypes co-located with each other, potentially indicating that a single genetic factor might regulate both phenotypes. Thus, our in-depth phenotyping combined with genetic analyses revealed the quantitative nature of the LS-IN and CS-SS phenotypes in mul2.b, paving the way for cloning the genes underlying these QTLs in the future.


2021 ◽  
Author(s):  
Venkatasubbu Thirulogachandar ◽  
Geetha Govind ◽  
Goetz Hensel ◽  
Sandip Kale ◽  
Markus Kuhlmann ◽  
...  

Illuminating the mechanisms of inflorescence architecture of grain crops that feed our world may strengthen the goal towards sustainable agriculture. Lateral spikelet development of barley (Hordeum vulgare L.) is such an example of a floral architectural trait regulated by VRS1 (Vulgare Row-type Spike 1 or Six-rowed Spike 1, syn. HvHOX1). The mechanistic function of this gene and its paralog HvHOX2 on spikelet development is still fragmentary. Here, we show that these duplicated transcription factors (TFs) have contrasting nucleotide diversity in various barley genotypes and several Hordeum species. Despite this difference, both proteins retain their basic properties of the homeodomain leucine zipper class I family of TFs. During spikelet development, these genes exhibit similar spatiotemporal expression patterns yet with anticyclic expression levels. A gene co-expression network analysis suggested that both have an ancestral relationship but their functions appear antagonistic to each other, i.e., HvHOX1 suppresses whereas HvHOX2 rather promotes spikelet development. Our transgenic promoter-swap analysis showed that HvHOX2 can restore suppressed lateral spikelets when expression levels are increased; however, at its low endogenous expression level, HvHOX2 appears dispensable for spikelet development. Collectively, this study proposes that the dosage of the two antagonistic TFs, HvHOX1 and HvHOX2, influence spikelet development in barley.


2021 ◽  
Author(s):  
Ravi Koppolu ◽  
Guojing Jiang ◽  
Sara G Milner ◽  
Quddoos H Muqaddasi ◽  
Twan Rutten ◽  
...  

AbstractUnderstanding the genetic basis of yield forming factors in small grain cereals is of extreme importance, especially in the wake of stagnation of further yield gains in these crops. One such yield forming factor in these cereals is the number of grain-bearing florets produced per spikelet. Wildtype barley (Hordeum vulgare L.) spikelets are determinate structures, the spikelet axis (rachilla) degenerates after producing single floret. In contrast, the rachilla of wheat (Triticum ssp.) spikelets, which are indeterminate, elongates to produce up to 12 florets. In our study, we characterized the barley spikelet determinacy mutant multiflorus2.b (mul2.b) that produced up to three fertile florets on elongated rachillae of lateral spikelets. Apart from the lateral spikelet indeterminacy (LS-IN), we also characterized the supernumerary spikelet phenotype in the central spikelets (CS-SS) of mul2.b. Through our phenotypic and genetic analyses, we identified two major QTLs on chromosomes 2H and 6H, and two minor QTLs on 3H for the LS-IN phenotype. For, the CS-SS phenotype we identified one major QTL on 6H, and a minor QTL on 5H chromosomes. Notably, the 6H QTLs for CS-SS and LS-IN phenotypes co-located with each other, potentially indicating that a single genetic factor might regulate both phenotypes. Thus, our in-depth phenotyping combined with genetic analyses revealed the quantitative nature of the LS-IN and CS-SS phenotypes in mul2.b, paving the way for cloning the genes underlying these QTLs in the future.Key messageSpikelet indeterminacy and supernumerary spikelet phenotypes in barley multiflorus2.b mutant show polygenic inheritance. Genetic analysis of multiflorus2.b revealed major QTLs for spikelet determinacy and supernumerary spikelet phenotypes on 2H and 6H chromosomes.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1655
Author(s):  
Helmy M. Youssef ◽  
Mohamed Allam ◽  
Faiza Boussora ◽  
Axel Himmelbach ◽  
Sara G. Milner ◽  
...  

Barley (Hordeum vulgare L.) is one of the major grain crops worldwide and considered as a model plant for temperate cereals. One of the barley row-type groups, named intermedium-barley, was used in our previous study where we reported that other genetic loci rather than vrs1 and Int-c could play a role in lateral spikelet development and even in setting grains. To continue this work, we used phenotypic and genotypic data of 254 intermedium-spike barley accessions aimed at dissecting the genetic basis of development and grain traits of lateral and central spikelet using genome wide association (GWAS) analysis. After genotypic data filtering, 8,653 single-nucleotide polymorphism (SNPs) were used for GWAS analysis. A total of 169 significant associations were identified and we focused only on the subset of associations that exceeded the p < 10−4 threshold. Thirty-three highly significant marker-trait-associations (MTAs), represented in 28 different SNPs on all seven chromosomes for the central and/or lateral spikelet traits; such as kernel length, width, area, weight, unfilled spikelet and 1000-kernel weight, were detected. Highly significant associated markers were anchored physically using barley genome sequencing to identify candidate genes to either contain the SNPs or the closest gene to the SNP position. The results showed that 12 MTAs were specific for lateral spikelet traits, nine MTAs were specific for central spikelet traits and seven MTAs for both central and lateral traits. All together, the GWAS and candidate gene results support our hypothesis that lateral spikelet development could be regulated by loci different from those regulating central spikelet development.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Hazel Bull ◽  
M. Cristina Casao ◽  
Monika Zwirek ◽  
Andrew J. Flavell ◽  
William T. B. Thomas ◽  
...  

2017 ◽  
Vol 174 (4) ◽  
pp. 2397-2408 ◽  
Author(s):  
G. Wilma van Esse ◽  
Agatha Walla ◽  
Andreas Finke ◽  
Maarten Koornneef ◽  
Ales Pecinka ◽  
...  

Genome ◽  
2014 ◽  
Vol 57 (4) ◽  
pp. 239-244 ◽  
Author(s):  
Xifeng Ren ◽  
Yonggang Wang ◽  
Songxian Yan ◽  
Dongfa Sun ◽  
Genlou Sun

Spike morphology is a key characteristic in the study of barley genetics, breeding, and domestication. Variation at the six-rowed spike 1 (vrs1) locus is sufficient to control the development and fertility of the lateral spikelet of barley. To study the genetic variation of vrs1 in wild barley (Hordeum vulgare subsp. spontaneum) and cultivated barley (Hordeum vulgare subsp. vulgare), nucleotide sequences of vrs1 were examined in 84 wild barleys (including 10 six-rowed) and 20 cultivated barleys (including 10 six-rowed) from four populations. The length of the vrs1 sequence amplified was 1536 bp. A total of 40 haplotypes were identified in the four populations. The highest nucleotide diversity, haplotype diversity, and per-site nucleotide diversity were observed in the Southwest Asian wild barley population. The nucleotide diversity, number of haplotypes, haplotype diversity, and per-site nucleotide diversity in two-rowed barley were higher than those in six-rowed barley. The phylogenetic analysis of the vrs1 sequences partially separated the six-rowed and the two-rowed barley. The six-rowed barleys were divided into four groups.


2011 ◽  
Vol 43 (2) ◽  
pp. 169-172 ◽  
Author(s):  
Luke Ramsay ◽  
Jordi Comadran ◽  
Arnis Druka ◽  
David F Marshall ◽  
William T B Thomas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document