scholarly journals 1Selenium supply alters the subcellular distribution and chemical forms of cadmium and the expression of transporter genes involved in cadmium uptake and translocation in winter wheat (Triticum aestivum)

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jiaojiao Zhu ◽  
Peng Zhao ◽  
Zhaojun Nie ◽  
Huazhong Shi ◽  
Chang Li ◽  
...  

Abstract Background Cadmium (Cd) accumulation in crops affects the yield and quality of crops and harms human health. The application of selenium (Se) can reduce the absorption and transport of Cd in winter wheat. Results The results showed that increasing Se supply significantly decreased Cd concentration and accumulation in the shoot and root of winter wheat and the root-to-shoot translocation of Cd. Se application increased the root length, surface area and root volume but decreased the average root diameter. Increasing Se supply significantly decreased Cd concentration in the cell wall, soluble fraction and cell organelles in root and shoot. An increase in Se supply inhibited Cd distribution in the organelles of shoot and root but enhanced Cd distribution in the soluble fraction of shoot and the cell wall of root. The Se supply also decreased the proportion of active Cd (ethanol-extractable (FE) Cd and deionized water-extractable (FW) Cd) in root. In addition, the expression of TaNramp5-a, TaNramp5-b, TaHMA3-a, TaHMA3-b and TaHMA2 significantly increased with increasing Cd concentration in root, and the expression of TaNramp5-a, TaNramp5-b and TaHMA2 in root was downregulated by increasing Se supply, regardless of Se supply or Cd stress. The expression of TaHMA3-b in root was significantly downregulated by 10 μM Se at both the 5 μM and 25 μM Cd level but upregulated by 5 μM Se at the 25 μM Cd level. The expression of TaNramp5-a, TaNramp5-b, TaHMA3-a, TaHMA3-b and TaHMA2 in shoot was downregulated by increasing Se supply at 5 μM Cd level, and 5 μM Se upregulated the expression of those genes in shoot at 25 μM Cd level. Conclusions The results confirm that Se application limits Cd accumulation in wheat by regulating the subcellular distribution and chemical forms of Cd in winter wheat tissues, as well as the expression of TaNramp5-a, TaNramp5-b and TaHMA2 in root.

2020 ◽  
Author(s):  
Jiaojiao Zhu ◽  
Peng Zhao ◽  
Zhaojun Nie ◽  
Huazhong Shi ◽  
Chang Li ◽  
...  

Abstract Background Cadmium (Cd) accumulation in crops will affect the yield and quality of crops, and also harm human health. The application of selenium (Se) can reduce the absorption and transport of Cd in winter wheat. Results The result showed that increasing Se supply significantly decreased Cd concentration and accumulation in shoots and roots of winter wheat, and the root to shoot translocation of Cd. The Se supply increased the root length, surface area and root volume, but decreased the root average diameter. Increasing Se supply significantly decreased Cd concentration in cell wall, soluble fraction and cell organelle in roots and shoots. An increase of Se supply inhibited Cd distribution in the organelle of shoot and root, but enhanced Cd distribution in the soluble fraction of shoot and the cell wall of root. The Se supply also decreased the proportion of active Cd (ethanol-extractable (FE) Cd and deionized water-extractable (FW) Cd) in roots. In addition, the expression of TaNramp5-a, TaNramp5-b, TaHMA3-a, TaHMA3-b and TaHMA2 were significantly increased with the increase of Cd concentration in roots, and the expression of TaNramp5-a, TaNramp5-b and TaHMA2 in roots were down-regulated by increasing Se supply, regardless of Se supply or Cd stress, respectively. The expression of TaHMA3-b in root was significantly down-regulated by Se10 treatment at both Cd5 and Cd25 but up-regulated by Se5 treatment at Cd25. The expression of TaNramp5-a, TaNramp5-b, TaHMA3-a, TaHMA3-b and TaHMA2 in shoot were down-regulated by increasing Se supply at Cd5, and Se5 treatment up-regulated the expression of those genes in shoot at Cd25. Conclusions The results confirm that Se application limit Cd accumulation in wheat via regulating subcellular distribution and the chemical forms of Cd in tissues of winter wheat, as well as the expression of TaNramp5-a, TaNramp5-b and TaHMA2 in root.


Author(s):  
Zhigang Fang ◽  
Zhaoyang Hu ◽  
Xinqiang Yin ◽  
Gang Song ◽  
Qingsheng Cai

Subcellular fractions and the chemical forms of cadmium (Cd) reflect its level of toxicity to plants; however, these effects of exogenous glutathione (GSH) are poorly understood. We exposed two Italian ryegrass (Lolium multiflorum) cultivars (IdyII and Harukaze) to 50 µM Cd or 200 µM GSH to investigate the effect of GSH on the Cd uptake, subcellular compartments, and chemical forms. Cd significantly inhibited the plant growth, while GSH supplementation decreased this inhibition. The application of GSH significantly improved the Cd concentration in the roots but reduced that in the shoots and decreased the Cd translocation from root to shoot. The Cd concentration of the root in the cell wall was increased while the concentration in the soluble fraction was decreased when supplied with GSH. The inorganic form (80% ethanol for Cd extraction) in the roots was significantly reduced when treated with GSH. The Cd form extracted by 2% acetic acid (HAC) with low toxicity and immobility were greatly increased. In leaves, the application GSH decreased in any form of Cd form extracted. In conclusion, exogenous GSH decreased the translocation of Cd and alleviated Italian ryegrass Cd toxicity by accumulating more Cd in the root cell wall and immobilizing more Cd in lower toxicity fractions.


2021 ◽  
Author(s):  
Chuang Shen ◽  
Hui-Ling Fu ◽  
Qiong Liao ◽  
Bai-Fei Huang ◽  
Ying-Ying Huang ◽  
...  

Abstract Excessive accumulation of cadmium (Cd) in vegetables poses a serious threat to human health; therefore, it is urgent to screen and cultivate vegetable cultivars with low Cd accumulation in the edible parts. Eggplant has a high tendency for Cd accumulation, but research on its low Cd accumulation cultivars is still rare. In this study, to screen low-Cd cultivars, 30 eggplant cultivars were screened using soils containing 0.22 mg/kg, 2.9 mg/kg (low-Cd), and 4.7 mg/kg of Cd (high-Cd). MYCQ and ZGQ were confirmed as low-Cd cultivars, BXGZ and WCCQ were confirmed as high-Cd cultivars, and a 2.52–3.88 fold difference in Cd concentration was observed in their fruits. The subcellular distribution revealed that the root cell wall and vacuole Cd concentrations of a typical low-Cd cultivar (MYCQ) were significantly higher than those of a typical high-Cd cultivar (BXGZ); however, the Cd concentrations in the cell wall and vacuole in fruits, leaves, and stems were significantly lower in MYCQ than in BXGZ. These results indicated that the low-Cd cultivars of eggplant could lessen Cd toxicity through the elevated Cd retention and sequestration levels of root cell walls and vacuoles, thus reducing Cd transport from roots to aboveground tissues, leading to low Cd accumulation. The findings of this study can provide a physiological and biochemical foundation for the screening and breeding of low-Cd cultivars of fruit vegetables and demonstrates that the application of low-Cd cultivars is necessary for food safety in humans.


2021 ◽  
Vol 222 ◽  
pp. 112540
Author(s):  
Muhammad Riaz ◽  
Muhammad Kamran ◽  
Muhammad Rizwan ◽  
Shafaqat Ali ◽  
Yaoyu Zhou ◽  
...  

2006 ◽  
Vol 53 (6) ◽  
pp. 746-750 ◽  
Author(s):  
L. D. Garaeva ◽  
S. A. Pozdeeva ◽  
O. A. Timofeeva ◽  
L. P. Khokhlova

Sign in / Sign up

Export Citation Format

Share Document