scholarly journals Delivery of acetamiprid to tea leaves enabled by porous silica nanoparticles: efficiency, distribution and metabolism of acetamiprid in tea plants

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xinyi Wang ◽  
Min Yan ◽  
Jie Zhou ◽  
Wei Song ◽  
Yu Xiao ◽  
...  

Abstract Background Pesticide residue and its poor utilization remains problematic in agricultural development. To address the issue, a nano-pesticide has been developed by incorporating pesticide acetamiprid in porous silica nanoparticles. Results This nano-pesticide had an acetamiprid loading content of 354.01 mg g−1. Testing LC50 value against tea aphids of the commercial preparation was three times that of the nano-pesticide. In tea seedlings (Camellia sinensis L.), acetamiprid was transported upward from the stem to the young leaves. On day 30, the average retained concentrations in tea leaves treated with the commercial preparation were about 1.3 times of that in the nano-pesticide preparation. The residual concentrations of dimethyl-acetamiprid in leaves for plants treated with the commercial preparation were about 1.1 times of that in the nano-pesticide preparation. Untargeted metabolomics of by LC–MS on the young leaves of tea seedlings under nano-pesticide and commercial pesticide treatments showed significant numbers of differentially expressed metabolites (P < 0.05 and VIP > 1). Between the nano-pesticide treatment group and the commercial preparation treatment group there were 196 differentially expressed metabolites 2 h after treatment, 200 (7th day), 207 (21st day), and 201 (30th day) in negative ion mode, and 294 (2nd h), 356 (7th day), and 286 (30th day) in positive ion mode. Preliminary identification showed that the major differentially expressed metabolites were glutamic acid, salicylic acid, p-coumaric acid, ribonic acid, glutamine, naringenin diglucoside, sanguiin H4, PG (34:2) and epiafzelechin. Conclusions This work demonstrated that our nano-pesticide outperformed the conventional pesticide acetamiprid in terms of insecticidal activity and pesticide residue, and the absorption, transportation and metabolism of nano-pesticide in tea plant were different, which pave a new pathway for pest control in agricultural sector. Graphical abstract

Author(s):  
Zongyu Wang ◽  
Hao Chen ◽  
Yangyang Wang ◽  
Jihua Chen ◽  
Mark A. Arnould ◽  
...  

2013 ◽  
Vol 9 (11) ◽  
pp. 9183-9193 ◽  
Author(s):  
Stefaan J. Soenen ◽  
Bella Manshian ◽  
Shareen H. Doak ◽  
Stefaan C. De Smedt ◽  
Kevin Braeckmans

Nanoscale ◽  
2019 ◽  
Vol 11 (45) ◽  
pp. 21953-21963 ◽  
Author(s):  
Xiaowei Xu ◽  
Maolei Sun ◽  
Dandan Wang ◽  
Wenhuan Bu ◽  
Zilin Wang ◽  
...  

Bone morphogenetic protein-2 plasmid was encapsulated by polyethylenimine-modified porous silica nanoparticles, which promoted osteogenic differentiation and increased calcium deposition with the involvement of autophagy.


2019 ◽  
Vol 17 (1) ◽  
pp. 346-356
Author(s):  
Jiayu Lin ◽  
Chaowen Deng ◽  
Yanzhong Peng ◽  
Jie Zheng ◽  
Liya Wei ◽  
...  

AbstractOn the basis of carbon tetrachloride (CCl4)induced liver fibrosis in rats, this study aims to investigate the dynamic changes in matrix metalloproteinase 1 (MMP1) and the tissue inhibitor of metalloproteinase 1 (TIMP1) in the antifibrotic process of Dahuang Zhechong Pill (DHZCP). A total of 50 male Sprague Dawley rats, aged 8 weeks, were randomly divided into 3 groups: the control group, the model group (the group treated with CCl4), and the treatment group (the group treated with CCl4 and DHZCP). Rats were sacrificed at Weeks 4 and 8. Liver tissues were separated for RNA sequencing and bioinformatics analysis. Real-time PCR, Western blot analysis, and histological staining were conducted to confirm the gene expression and pathological change in liver tissues. Compared with control group, rats in model group showed poor mental state and slow weight gain. The liver tissues of the rats in the model group exhibited a damaged hepatic lobule structure, fibrous connective tissue hyperplasia, and inflammatory cell infiltration among the hyperplastic tissues. DHZCP could significantly improve the appearance of rats and alleviate CCl4-induced fibrosis. Compared to model group, 798 differentially expressed mRNAs were found in the treatment group, of which 120 were up-regulated and 678 were down-regulated. Differentially expressed mRNAs between the CCl4-induced group and the DHZCP-treated group were mainly focused on the following KEGG pathways: focal adhesion, phagosome, tight junction, and ECM–receptor interactions. Relative to those in the control group, MMP1 was downregulated, whereas, TIMP1 and Col1A1 were upregulated in the CCl4-induced group at Weeks 4 and 8. DHZCP could reverse MMP1, TIMP1, and Col1A1 expression.DHZCP protects against liver injury and exerts an antifibrotic effect on liver fibrosis induced by CCl4 in rats. Its mechanism may be related to the upregulation of MMP1, downregulation of TIMP1, and promotion of collagen degradation.


NANO ◽  
2020 ◽  
Vol 15 (03) ◽  
pp. 2050038
Author(s):  
Zhe Chen ◽  
Jiaqiong Xu ◽  
Xuechen Xiang ◽  
Dongfang Ren ◽  
Ning Chen ◽  
...  

In this study, porous silica nanoparticles were fabricated in the absence of organic surfactant template at room temperature by a facile one-step dialysis method. By using a dialysis system comprising an ammonia solution as the dialysate, a series of porous silica nanoparticles with a rough surface (e.g., raspberry-like) were obtained by the initiation of a homogeneous ternary tetraethylsilicate-water-ethanol system with different ammonia solution concentrations. The specific surface area and pore volume of porous nanoparticles were regulated by changing the dialysate concentrations. N2 adsorption–desorption measurements revealed that the porous silica nanoparticles owned both mesopores and micropores and exhibited a type IV isotherm, hence, these nanoparticles can be used as mesoporous silica nanoparticles (MSNs). The Au@MSN nanocomposite can be used as a catalyst for the typical reduction of 4-nitrophenol to 4-aminophenol by NaBH4 and exhibited excellent catalytic performance.


2013 ◽  
Vol 20 (3) ◽  
pp. 673-677 ◽  
Author(s):  
Haitham Mohammad Abdelaal ◽  
Mahmoud Farag Zawrah ◽  
Bernd Harbrecht

Soft Matter ◽  
2020 ◽  
Vol 16 (21) ◽  
pp. 4961-4968 ◽  
Author(s):  
Haozheng Lv ◽  
Yi Xing ◽  
Xin Du ◽  
Tailin Xu ◽  
Xueji Zhang

Janus nanomotors with H2O2 and NIR light dual-propulsion were successfully constructed by employing dendritic porous silica nanoparticles as carriers via a Pickering emulsion and electrostatic self-assembly.


Sign in / Sign up

Export Citation Format

Share Document