scholarly journals Combined inoculation with dark septate endophytes and arbuscular mycorrhizal fungi: synergistic or competitive growth effects on maize?

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Linlin Xie ◽  
Yinli Bi ◽  
Shaopeng Ma ◽  
Jianxuan Shang ◽  
Qincheng Hu ◽  
...  

Abstract Background Effects on maize were assessed of dual inoculation with arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) isolated from other plant species. Methods Suspensions of DSE isolated from Stipa krylovii were prepared at different densities (2, 4, and 8 × 105 CFU mL− 1) and inoculated separately (AMF or DSE) or together (AMF + DSE), to explore their effects on maize growth. Results Inoculation with AMF or medium and high densities of DSE and combined inoculation (AMF + DSE) increased plant above-ground growth and altered root morphology. Differences in plant growth were attributable to differences in DSE density, with negative DSE inoculation responsiveness at low density. AMF promoted plant above-ground growth more than DSE and the high density of DSE promoted root development more than AMF. Combined inoculation might lead to synergistic growth effects on maize at low density of DSE and competitive effects at medium and high DSE densities. Conclusions AMF and DSE co-colonized maize roots and they had positive effects on the host plants depending on DSE density. These findings indicate the optimum maize growth-promoting combination of AMF and DSE density and provide a foundation for further exploration of potentially synergistic mechanisms between AMF and DSE in physiological and ecological effects on host plants.

Author(s):  
M.-Miao Xie, Q.-Sheng Wu

Arbuscular mycorrhizal fungi (AMF) represent positive effects on growth performance, nutrient absorption and stressed tolerance of host plants, whereas it is not clear whether AMF can affect flowering traits of ornamental plants. In this work, Diversispora spurca, D. versiformis, and Funneliformis mosseae were applied to rhizosphere of potted hyacinth (Hyacinths orientalis L. Anna Marie) plants. After four months of mycorrhizal inoculation, root could be colonized by exogenous AMF species, varied from 38% to 49%, whilst F. mosseae had the best mycorrhizal status. Out of these AMF species used, only F. mosseae-inoculated plants recorded greater raceme length and biomass production of single flowerlet, raceme, and flower stem. F. mosseae also induced the flowering earlier in 2 days and prolonged flowering time for 3 days. D. versiformis postponed 2 days for flowering. Mycorrhizal plants recorded considerably higher acetic acid (IAA) and zeatin riboside (ZR) levels in flowers, irrespective of AMF species. F. mosseae-inoculated plants had significantly higher methyl jasmonate (MeJA) concentrations in flowers than other AMF- or non-AMF-treated plants. These results thereby conclude that F. mosseae can be used to regulate flowering of H. orientalis L. Anna Marie, including flowering earlier and prolonging flowering time, which is closely associated with IAA, ZR and MeJA levels in flowers.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


2018 ◽  
Vol 36 ◽  
pp. 63-74 ◽  
Author(s):  
Clifton P. Bueno de Mesquita ◽  
Samuel A. Sartwell ◽  
Emma V. Ordemann ◽  
Dorota L. Porazinska ◽  
Emily C. Farrer ◽  
...  

2019 ◽  
Vol 42 ◽  
pp. e42477 ◽  
Author(s):  
Rosalba Ortega Fors ◽  
Orivaldo José Saggin Júnior ◽  
Marco Aurélio Carbone Carneiro ◽  
Ricardo Luis Louro Berbara

The present study aimed to select efficient arbuscular mycorrhizal fungi (AMF) for sugarcane growth and P nutrition in four soils that spontaneously contained dark septate endophytes (DSE). The effect of nine AMF isolates was evaluated individually in sugarcane presprouted seedlings (SP81-3250) grown under greenhouse conditions for a 120-day period. The isolates that stimulated plant growth in the soils with low P availability were Acaulospora colombiana (ACOL), Claroideoglomus etunicatum (CETU), Gigaspora margarita (GMAR), Rhizophagus clarus (RCLA) and Scutellospora calospora (SCAL). Compared to the Yellow Argisol, which had the highest P level, the Red-Yellow Argisol, with an intermediate P content, increased plant height. Compared to the other treatments, inoculation with ACOL, RCLA, and SCAL resulted in higher foliar P content in plants grown in soils with high to intermediate P levels. Root colonization by AMF and DSE was verified in the plants, with the coexistence of both fungal groups in the same plant and/or root fragment. However, AMF colonization was low compared to DSE colonization. The cooccurrence of DSE and AMF was higher in the plants inoculated with ACOL, RCLA, SCAL, and Dentiscutata heterogama. ACOL, CETU, GMAR, RCLA, and SCAL are AMF isolates that have the potential to establish a mycorrhizal inoculant for sugarcane that would be effective in several soils.


Sign in / Sign up

Export Citation Format

Share Document