scholarly journals Detecting SARS-CoV-2 at point of care: preliminary data comparing loop-mediated isothermal amplification (LAMP) to polymerase chain reaction (PCR)

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Marc F. Österdahl ◽  
Karla A. Lee ◽  
Mary Ni Lochlainn ◽  
Stuart Wilson ◽  
Sam Douthwaite ◽  
...  

Abstract Background A cost effective and efficient diagnostic tool for COVID-19 as near to the point of care (PoC) as possible would be a game changer in the current pandemic. We tested reverse transcription loop mediated isothermal amplification (RT-LAMP), a method which can produce results in under 30 min, alongside standard methods in a real-life clinical setting. Methods This prospective service improvement project piloted an RT-LAMP method on nasal and pharyngeal swabs on 21 residents of a high dependency care home, with two index COVID-19 cases, and compared it to multiplex tandem reverse transcription polymerase chain reaction (RT-PCR). We recorded vital signs of patients to correlate clinical and laboratory information and calculated the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of a single swab using RT-LAMP compared with the current standard, RT-PCR, as per Standards for Reporting Diagnostic Accuracy Studies (STARD) guidelines. Results The novel method accurately detected 8/10 RT-PCR positive cases and identified a further 3 positive cases. Eight further cases were negative using both methods. Using repeated RT-PCR as a “gold standard”, the sensitivity and specificity of a single novel test were 80 and 73% respectively. PPV was 73% and NPV was 83%. Incorporating retesting of low signal RT-LAMP positives improved the specificity to 100%. We also speculate that hypothermia may be a significant early clinical sign of COVID-19. Conclusions RT-LAMP testing for SARS-CoV-2 was found to be promising, fast and to work equivalently to RT-PCR methods. RT-LAMP has the potential to transform COVID-19 detection, bringing rapid and accurate testing to the PoC. RT-LAMP could be deployed in mobile community testing units, care homes and hospitals to detect disease early and prevent spread.

Biomédica ◽  
2019 ◽  
Vol 39 (2) ◽  
pp. 415-426
Author(s):  
Alfonso Bettin-Martínez ◽  
José Villareal-Camacho ◽  
Guillermo Cervantes-Acosta ◽  
Jorge Acosta-Reyes ◽  
Juliana Barbosa ◽  
...  

Introducción. El virus sincicial respiratorio humano (hRSV) es la causa más frecuente de infección respiratoria aguda de las vías respiratorias inferiores en niños menores de cinco años. El desarrollo de técnicas moleculares para identificarlo es uno de los retos actuales en el campo de la investigación clínica.Objetivo. Evaluar un método de amplificación isotérmica para la detección rápida del hRSV en niños con infección respiratoria aguda.Materiales y métodos. Se extrajo el ARN viral de 304 muestras de hisopado nasal en niños con síntomas de infección respiratoria aguda atendidos en el servicio de urgencias del Hospital de la Universidad del Norte en Barranquilla entre abril del 2016 y julio del 2017. Se evaluó la prueba de amplificación isotérmica mediada por bucle mediante transcriptasa inversa de la proteína de la matriz (M) (Reverse Transcription Loop-Mediated Isothermal Amplification, RT-LAMP) comparada con técnicas moleculares como la reacción en cadena de la polimerasa mediante transcriptasa inversa múltiple anidada (Reverse Transcription-Polymerase Chain Reaction, RT-PCR), la cual se empleó como la prueba estándar, la PCR en tiempo real (quantitative PCR, qPCR) y la RT-LAMP de la proteína L (L) para la detección rápida del virus sincicial respiratorio (VSR), subtipo A y subtipo B.Resultados. La prueba de RT-LAMP (M) tuvo una sensibilidad de 93,59 %, una especificidad de 92,92 % y una concordancia de 0,83 ± 0,036 comparada con la prueba de RT-PCR anidada. El índice kappa del RT-LAMP (M) fue superior, y los valores del RTLAMP (L) y la qPCR concordaron (0,75 ± 0,043 y 0,71 ± 0,045, respectivamente).


2015 ◽  
Vol 84 (3) ◽  
pp. 215-223
Author(s):  
Shuixian Yang ◽  
Kai-Yu Wang ◽  
Zexiao Yang

Grass carp reovirus (GCRV) has been assigned to a newly established Aquareovirus genus in the family of Reoviridae which leads to haemorrhagic disease and extremely high mortality rate in grass carp. In this study, comparison was made between the novel one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) and the reverse transcription polymerase chain reaction (RT-PCR) for detection of grass carp reovirus. The result indicated that RT-LAMP had × 10 higher sensitivity comparable to RT-PCR. The specificity of the two methods for GCRV detection were both developed successfully by other three aquatic viruses. In the field trial, both RT-PCR and RT-LAMP methods were applied to detect the samples from different infected organs and tissues. The result demonstrated that RT-LAMP had a high accuracy to confirm the diagnosis as well as the RT-PCR. This study showed that the RT-LAMP, compared to the RT-PCR, was simple, time-saving, convenient, but required specificity primers and possibly generated false positive product. Its products, unlike RT-PCR, could not be direcly used in further molecular research after purification. Thus RT-LAMP might be an optimal diagnostic method for rapid and preliminary diagnosis of GCRV infection in resource-limited setting situation.


Author(s):  
Marc F Österdahl ◽  
Karla A Lee ◽  
Mary Ni Lochlainn ◽  
Stuart Wilson ◽  
Sam Douthwaite ◽  
...  

AbstractBackgroundThe need for a fast and reliable test for COVID-19 is paramount in managing the current pandemic. A cost effective and efficient diagnostic tool as near to the point of care (PoC) as possible would be a game changer in current testing. We tested reverse transcription loop mediated isothermal amplification (RT-LAMP), a method which can produce results in under 30 minutes, alongside standard methods in a real-life clinical setting.MethodsThis service improvement project piloted a research RT-LAMP method on nasal and pharyngeal swabs on 21 residents in a high dependency care home, with two index COVID-19 cases, and compared it to multiplex tandem reverse transcription polymerase chain reaction (RT-PCR). We calculated the sensitivity, specificity, positive and negative predictive values of a single RT-LAMP swab compared to RT-PCR, as per STARD guidelines. We also recorded vital signs of patients to correlate clinical and laboratory information.FindingsThe novel method accurately detected 8/10 PCR positive cases and identified a further 3 positive cases. Eight further cases were negative using both methods. Using repeated RT-PCR as a “gold standard”, the sensitivity and specificity of the novel test were 80% and 73% respectively. Positive predictive value (PPV) was 73% and negative predictive value (NPV) was 83%. We also observed hypothermia to be a significant early clinical sign in a number of COVID-19 patients in this setting.InterpretationRT-LAMP testing for SARS-CoV-2 was found to be promising, fast, easy to use and to work equivalently to RT-PCR methods. Definitive studies to evaluate this method in larger cohorts are underway. RT-LAMP has the potential to transform COVID-19 detection, bringing rapid and accurate testing to the point of care. This method could be deployed in mobile testing units in the community, care homes and hospitals to detect disease early and prevent spread.


Animals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 76
Author(s):  
Faiz Padzil ◽  
Abdul Razak Mariatulqabtiah ◽  
Wen Siang Tan ◽  
Kok Lian Ho ◽  
Nurulfiza Mat Isa ◽  
...  

Over the years, development of molecular diagnostics has evolved significantly in the detection of pathogens within humans and their surroundings. Researchers have discovered new species and strains of viruses, while mitigating the viral infections that occur, owing to the accessibility of nucleic acid screening methods such as polymerase chain reaction (PCR), qualitative (real-time) polymerase chain reaction (qPCR) and reverse-transcription qPCR (RT-qPCR). While such molecular detection methods are widely utilized as the benchmark, the invention of isothermal amplifications has also emerged as a reliable tool to improvise on-field diagnosis without dependence on thermocyclers. Among the established isothermal amplification technologies are loop-mediated isothermal amplification (LAMP), recombinant polymerase amplification (RPA), strand displacement activity (SDA), nucleic acid sequence-based amplification (NASBA), helicase-dependent amplification (HDA) and rolling circle amplification (RCA). This review highlights the past research on and future prospects of LAMP, its principles and applications as a promising point-of-care diagnostic method against avian viruses.


2007 ◽  
Vol 76 (3) ◽  
pp. 405-413 ◽  
Author(s):  
H. Noroozian ◽  
M. Vasfi Marandi ◽  
M. Razazian

Avian Influenza (AI) is a viral, highly contagious disease of domestic and wild birds. In an avian diagnostic laboratory, it is essential to have methods for rapid detection of respiratory viruses. In the present study, cloacal swabs collected from chickens experimentally and naturally infected with mild pathogenicity AI virus subtype H9, used in a reverse transcription-polymerase chain reaction (RTPCR) assay for detection of AI. On cloacal swabs collected from experimentally infected chickens, AI virus was detected most frequently between days 3 and 7 post infection (p.i.) and the relative sensitivity, specificity, correlation rate, positive predictive value and negative predictive value of the RT-PCR compared to virus isolation (VI) assay were 84%, 80%, 82%, 83% and 81%, respectively. On pooled cloacal swabs collected from flocks suspected of AI, these results were 96%, 100%, 97%, 83% and 100%, respectively. The results proved that the RT-PCR assay could be a reliable and rapid alternative to VI assay for detection of AI virus subtype H9 in faecal specimens.


2021 ◽  
pp. 004947552110180
Author(s):  
Dipti Handa ◽  
Monica Gupta ◽  
Sarabmeet Singh Lehl ◽  
Amit Gupta ◽  
Ram Singh

Definitive diagnosis of amoebic liver abscess is challenging owing to the unavailability of sensitive commercial point-of-care molecular tests. The primary aim of our prospective diagnostic study was to compare available laboratory methods for the diagnosis of Entamoeba histolytica in clinical samples with loop-mediated isothermal amplification. We compared deoxyribonucleic acid (DNA) analysis methods, namely, loop-mediated isothermal amplification and reverse transcriptase polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA) using pus, stool and blood samples from 200 patients with clinical and radiological diagnosis of amoebic liver abscess. Loop-mediated isothermal amplification had significantly higher sensitivity (88%) as compared to reverse transcriptase polymerase chain reaction (64%) and excellent specificity (100%).


2006 ◽  
Vol 175 (4S) ◽  
pp. 485-486
Author(s):  
Sabarinath B. Nair ◽  
Christodoulos Pipinikas ◽  
Roger Kirby ◽  
Nick Carter ◽  
Christiane Fenske

Sign in / Sign up

Export Citation Format

Share Document