scholarly journals miR-10b suppresses cell invasion and metastasis through targeting HOXA3 regulated by FAK/YAP signaling pathway in clear-cell renal cell carcinoma

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Cheng He ◽  
Zhi-Yong Chen ◽  
Yang Li ◽  
Zhong-Qing Yang ◽  
Feng Zeng ◽  
...  
Author(s):  
Shenglin Gao ◽  
Lei Gao ◽  
Simin Wang ◽  
Xiaokai Shi ◽  
Chuang Yue ◽  
...  

BackgroundClear cell renal cell carcinoma (ccRCC) is one of the most common malignant cancers in East Asia, with high incidence and mortality. Accumulating evidence has shown that ATF3 is associated with tumor progression.MethodsUsing qPCR, the expression of ATF3 was detected in 93 patients with ccRCC, including 24 paired normal and tumor tissues, which were used to further compare ATF3 expression through western blotting and immunohistochemistry. Lentivirus was used for the overexpression or knockdown of ATF3, and the consequent alteration in function was analyzed through CCK8 assay, colony formation assay, wound healing assay, invasion assay, and flow cytometry. The potential mechanism affected by ATF3 was analyzed through gene set enrichment analysis (GSEA) and verified using western blotting, invasion assay, or immunofluorescence staining. Furthermore, a xenograft mouse model was used to assess the function of ATF3 in vivo.ResultsATF3 expression was significantly decreased in ccRCC compared to that in adjacent normal tissues. Through gain- and loss-of-function experiments performed in an in vitro assay, we found that ATF3 could regulate ccRCC cell proliferation, cycle progression, migration, and invasion. In the in vivo study, the xenograft mouse model revealed that ATF3 overexpression can inhibit the growth of ccRCC. Moreover, the mechanism analysis showed that suppression of ATF3 could lead to an increase the expression of β-catenin and promote β-catenin transfer to the nucleus, and might be affected by EGFR/AKT/GSK3β signaling.ConclusionATF3 could be utilized as an independent protective factor to inhibit the progression of ccRCC. Potential treatment strategies for ccRCC include targeting the ATF3/EGFR/AKT/GSK3β/β−catenin signaling pathway.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Jianyi Li ◽  
Guangzhen Wu ◽  
Yingkun Xu ◽  
Jiatong Li ◽  
Ningke Ruan ◽  
...  

Targeted therapy for kidney cancer has achieved significant clinical results. However, because most patients who use targeted therapy will develop drug resistance, we still need to constantly explore new therapeutic targets. Although porcupine (PORCN) as a palmitoyltransferase plays a crucial role in the activation and secretion of Wnt proteins and affects the activity of the Wnt signaling pathway, little is known about the role of PORCN in clear cell renal cell carcinoma (ccRCC). We found that PORCN is highly expressed in renal cancer cell lines and patients with renal cell carcinoma with high expression of PORCN have a poor prognosis. Pathway analysis of PORCN and its related proteins showed that PORCN played a role through the Wnt signaling pathway, and there was a strong coexpression relationship between PORCN and Wnt proteins. Therefore, PORCN may be a potential and effective target for ccRCC. In the present study, we found that LGK974 could inhibit proliferation and colony formation and induce apoptosis in ccRCC cells. We also found that LGK974 could inhibit the migration and invasion of renal cell carcinoma and reduce the expression of mesenchymal markers. After treatment with LGK974, the expression level of β-catenin, a key protein in the classical Wnt pathway, was significantly decreased, and the expression levels of the target genes cyclin D1, c-Myc, MMP9, and MMP2 in the Wnt signaling pathway were also significantly decreased, which represented a significant decrease in the activity of the Wnt signaling pathway. At the same time, the cycle of renal cancer cells was significantly blocked. In conclusion, our results indicate that LGK974 could significantly inhibit the progression of renal cancer cells in a safe concentration range, so PORCN may be a safe and effective target for patients with renal cancer.


2021 ◽  
Vol Volume 14 ◽  
pp. 3383-3394
Author(s):  
Lu Wang ◽  
Zhe Wang ◽  
Yuze Zhu ◽  
Shutao Tan ◽  
Xiaonan Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document