scholarly journals Mechanical force system of double key loop with finite element analysis

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jiali Liu ◽  
Duanqiang Zhang ◽  
Linyu Xu ◽  
Senxin Cai ◽  
Jinquan Guo ◽  
...  

Abstract Background The mechanics of double key loop (DKL) are not well defined, and this finite element study was designed to explore its force system. Methods A simplified 3-dimensional finite element model of single and double key loops with an archwire between the lateral incisor and second premolar was established in Ansys Workbench 17.0. Activation in Type-1 (retraction at the distal end), Type-2 (retraction at the distal key) and Type-3 (Type-2 plus ligation between keys) was simulated. The vertical force, load/deflection ratio and moment/force ratio of stainless-steel and titanium-molybdenum alloy (TMA) loops were calculated and compared. Results The double key loop generated approximately 40% of the force of a single key loop. Type-2 loading of DKL showed a higher L/D ratio than Type-1 loading with a similar M/F ratio. Type-3 loading of DKL showed the highest M/F ratio with a similar L/D ratio as single key loop. The M/F ratio in Type-3 loading increased with the decreasing of retraction force. The DKL of TMA produced approximately 40% of the force and moment compared with those of SS in all loading types. When activated at equal distances below 1 mm, the M/F ratios of SS and TMA DKL with equal preactivation angles were almost the same. Conclusion The M/F ratio on anterior teeth increases with the preactivation angle and deactivation of DKL. The M/F ratio at a certain distance of activation mainly depends on the preactivation angle instead of the wire material. TMA is recommended as a substitute for SS in DKL for a lower magnitude of force.

2020 ◽  
Author(s):  
Jiali Liu ◽  
Duanqiang Zhang ◽  
Linyu Xu ◽  
Senxin Cai ◽  
Jinquan Guo ◽  
...  

Abstract Background: The mechanics of double key loop (DKL) was not well defined and this finite element study was designed to explore its force system.Methods: Simplified 3-dimensional finite element model of single and double key loops with archwire between lateral incisor and second premolar was established in Ansys Workbench. Activation in Type-1 (retraction at distal end), Type-2 (retraction at distal key) and Type-3 (Type-2 plus ligation between keys) were simulated. The vertical force, load/deflection ratio and moment/force ratio of stainless steel and TMA loops were calculated and compared.Results: Double key loop generated about 40% force of single key loop. Type-2 loading of DKL showed higher L/D ratio than in Type-1 loading with similar M/F ratio. Type-3 loading of DKL showed the highest M/F ratio with similar L/D ratio as single key loop. The M/F ratio in Type-3 loading increased with the decrease of retraction force. DKL of TMA produced about 40% of force and moment compared to those of SS in all loading types. When activated at equal distance bellow 1mm, the M/F ratio of SS and TMA DKL with equal preactivation angle were almost the same. Conclusion: M/F ratio on anterior teeth increases with preactivation angle and deactivation of DKL. M/F ratio at certain distance of activation depends mainly on preactivation angle instead of wire material. TMA is recommended as substitute of SS in DKL for lower magnitude of force.


2021 ◽  
Vol 31 (1) ◽  
pp. 41-49
Author(s):  
Feifei Zhao

In actual engineering, the drive axle of vehicles is often enlarged to prevent it from being damaged. However, the enlargement will increase the weight of the vehicle, pushing up fuel consumption and exhaust emissions. This common practice is obviously detrimental to the environment and sustainable development. To meet the stiffness and strength requirements on the drive axle housing of Steyr heavy trucks, this paper carries out finite-element analysis on the stiffness and strength of the axile housing under different working conditions, in the light of its actual stress features. According to the production process of drive axle housing in truck, the authors reviewed the development of the materials for high-strength axle housing, which could be properly formed through hot stamping, cold stamping, and mechanical expansion, and briefly introduced the structural features of drive axle housing. Then, a drive axle model was established in the three-dimensional (3D) drawing software Pro/ENGINEER, and converted into a finite-element model in Pro/Mechanica by calling the meshing command. On this basis, the static load of axle housing was analyzed under four working conditions: maximum vertical force, maximum traction, maximum braking force, and maximum lateral force. Finite-element analysis was performed on the meshed model to obtain the displacement and stress cloud maps of the axle housing under each working condition. The results show that the drive axle housing satisfy the requirements on strength, stiffness, and deformation. To sum up, this research improves the design efficiency and quality of products through finite-element analysis on the stiffness and strength of drive axle housing.


2015 ◽  
Vol 86 (3) ◽  
pp. 372-379 ◽  
Author(s):  
Paiboon Techalertpaisarn ◽  
Antheunis Versluis

ABSTRACT Objective:  To investigate the effect of vertical steps on a T-loop force system at three interbracket distances (IBDs) and their association with V-bends. Materials and Methods:  Loop response during simulated loop pulling was determined for 18 T-loop configurations (6-, 9-, and 12-mm IBD with a 2.5-mm canine bracket (CB) end and 0- (plain), 0.5-, or 1-mm vertical step). Loop length-by-height was 8 × 8 or 10 × 10 mm. Horizontal load/deflection, vertical force (Fy), and moment-to-force (M/F) ratios at loop ends were determined for 100-g and 200-g activation by finite element analysis. Results:  Plain, 12-mm IBD T-loops showed similar force and moment responses as off-centered V-bends (greater moment close to V-bend) without change in moment direction at the premolar bracket (PB) end; plain, 6-mm IBD T-loop responses were similar to those of centered V-bends (equal, opposing moments at each end). Adding vertical steps to the T-loops raised the M/F ratio at the PB ends enough to produce root movement, while lowering the M/F ratios at the CB ends. Increasing the step bends for shorter IBDs increased Fys and caused rapid changes in M/F ratios. Unlike plain T-loops, increasing activation in stepped T-loops caused substantial variations in M/F ratios and in amount and direction of Fys. Conclusions:  Step bends can dramatically change the force system. Stepped T-loops display combined effects of V-bends and step bends.


2010 ◽  
Vol 44-47 ◽  
pp. 3907-3911
Author(s):  
Lin Ya Liu ◽  
Jin Wang ◽  
Rui Lv

By using the finite element analysis software ANSYS, a three-dimensional dynamic finite element model of ballastless track rail –floating slab was established. The model takes into account of the track irregularity case, the analysis the dynamic response characteristics of the rail and floating slab under the vertical force in the track structure. The results showed that: when the train load goes through the line, the dynamic response of the rails and floating slabs gradually increases to maximum and then decreases; the maximum response displacement of rail is at 0.625mm ~ 0.75mm and the maximum response acceleration values is in between 5000m/s2~6000 m/s2; the maximum response displacement value of floating slab is about 0.25mm, the maximum response acceleration value is between 0.8 m/s2~1.2m/s2.


2020 ◽  
Vol 46 (3) ◽  
pp. 214-220
Author(s):  
Hui Qie ◽  
Lingliang Kong ◽  
Fan Zhang ◽  
Chenxi Li ◽  
Lin Lu ◽  
...  

This study aims to elucidate the biomechanical effects of combined loading of maxillary anterior and posterior implants using the sliding method on en-masse retraction of the anterior teeth and to quantify the loading ratio (LR) of anterior and posterior implants to achieve controlled retraction of the maxillary anterior teeth. A three-dimensional finite element model of the maxilla-upper dentition appliance was constructed. Implants were placed on the distal (A) and mesial (B) sides of the lateral incisors as well as on the mesial (C) side of the first molar and different amounts of force were loaded between the implants using 2- or 5-mm traction hooks. The labiolingual movement of the anterior teeth was recorded and the relationship between the LR of the implants and the movement of the central incisors was evaluated. With 2-mm traction hooks, the central incisors exhibited a translation tendency during retraction at lower A/C and B/C LR and labial or lingual crown inclination at higher values. With 5-mm traction hooks, the central incisors, lateral incisors, and canine teeth exhibited a labial crown inclination. The results of this study suggest that 2-mm traction hooks can cause labial crown inclination, translation tendency during retraction, or lingual crown inclination of the central incisors due to alterations in the LR of the anterior and posterior implants. The central incisors only exhibited labial crown inclination during combined loading of the anterior and posterior implants when 5-mm traction hooks were used.


Author(s):  
А. Г. Гребеников ◽  
И. В. Малков ◽  
В. А. Урбанович ◽  
Н. И. Москаленко ◽  
Д. С. Колодийчик

The analysis of the design and technological features of the tail boom (ТB) of a helicopter made of polymer composite materials (PCM) is carried out.Three structural and technological concepts are distinguished - semi-monocoque (reinforced metal structure), monocoque (three-layer structure) and mesh-type structure. The high weight and economic efficiency of mesh structures is shown, which allows them to be used in aerospace engineering. The physicomechanical characteristics of the network structures are estimated and their uniqueness is shown. The use of mesh structures can reduce the weight of the product by a factor of two or more.The stress-strain state (SSS) of the proposed tail boom design is determined. The analysis of methods for calculating the characteristics of the total SSS of conical mesh shells is carried out. The design of the tail boom is presented, the design diagram of the tail boom of the transport category rotorcraft is developed. A finite element model was created using the Siemens NX 7.5 system. The calculation of the stress-strain state (SSS) of the HC of the helicopter was carried out on the basis of the developed structural scheme using the Advanced Simulation module of the Siemens NX 7.5 system. The main zones of probable fatigue failure of tail booms are determined. Finite Element Analysis (FEA) provides a theoretical basis for design decisions.Shown is the effect of the type of technological process selected for the production of the tail boom on the strength of the HB structure. The stability of the characteristics of the PCM tail boom largely depends on the extent to which its design is suitable for the use of mechanized and automated production processes.A method for the manufacture of a helicopter tail boom from PCM by the automated winding method is proposed. A variant of computer modeling of the tail boom of a mesh structure made of PCM is shown.The automated winding technology can be recommended for implementation in the design of the composite tail boom of the Mi-2 and Mi-8 helicopters.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


1992 ◽  
Vol 20 (2) ◽  
pp. 83-105 ◽  
Author(s):  
J. P. Jeusette ◽  
M. Theves

Abstract During vehicle braking and cornering, the tire's footprint region may see high normal contact pressures and in-plane shear stresses. The corresponding resultant forces and moments are transferred to the wheel. The optimal design of the tire bead area and the wheel requires a detailed knowledge of the contact pressure and shear stress distributions at the tire/rim interface. In this study, the forces and moments obtained from the simulation of a vehicle in stationary braking/cornering conditions are applied to a quasi-static braking/cornering tire finite element model. Detailed contact pressure and shear stress distributions at the tire/rim interface are computed for heavy braking and cornering maneuvers.


2020 ◽  
Vol 38 (1A) ◽  
pp. 25-32
Author(s):  
Waleed Kh. Jawad ◽  
Ali T. Ikal

The aim of this paper is to design and fabricate a star die and a cylindrical die to produce a star shape by redrawing the cylindrical shape and comparing it to the conventional method of producing a star cup drawn from the circular blank sheet using experimental (EXP) and finite element simulation (FES). The redrawing and drawing process was done to produce a star cup with the dimension of (41.5 × 34.69mm), and (30 mm). The finite element model is performed via mechanical APDL ANSYS18.0 to modulate the redrawing and drawing operation. The results of finite element analysis were compared with the experimental results and it is found that the maximum punch force (39.12KN) recorded with the production of a star shape drawn from the circular blank sheet when comparing the punch force (32.33 KN) recorded when redrawing the cylindrical shape into a star shape. This is due to the exposure of the cup produced drawn from the blank to the highest tensile stress. The highest value of the effective stress (709MPa) and effective strain (0.751) recorded with the star shape drawn from a circular blank sheet. The maximum value of lamination (8.707%) is recorded at the cup curling (the concave area) with the first method compared to the maximum value of lamination (5.822%) recorded at the cup curling (the concave area) with the second method because of this exposure to the highest concentration of stresses. The best distribution of thickness, strains, and stresses when producing a star shape by


Sign in / Sign up

Export Citation Format

Share Document