scholarly journals In vivo antimalarial activity of crude extracts and solvent fractions of leaves of Strychnos mitis in Plasmodium berghei infected mice

Author(s):  
Selamawit Fentahun ◽  
Eyasu Makonnen ◽  
Tesfaye Awas ◽  
Mirutse Giday
2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Getu Habte ◽  
Teshome Nedi ◽  
Solomon Assefa

Background. Malaria is among the leading causes of mortality and morbidity. Moreover, the emergence of resistance to antimalarial drugs is a major problem in controlling the disease. This makes the development of novel antimalarial drugs a necessity. Medicinal plants are important sources in discovering antimalarial drugs. Schinus molle is claimed for its antimalarial effect in Ethiopian folkloric medicine and endowed with in vitro antiplasmodial activity. In the present study, the in vivo antimalarial activity of the plant was investigated. Methods. Acute toxicity was carried out using a standard procedure. To screen the in vivo antimalarial potential of the S. molle against Plasmodium berghei (ANKA), a 4-day suppressive test was employed. The extracts and fractions were given to infected mice by oral gavage at 100, 200, and 400 mg/kg/day for four consecutive days. Parameters such as parasitemia were then evaluated. Results. Any sign of toxicity was not observed in the oral acute toxicity test. The crude extracts and solvent fractions exerted a significant (p<0.05) inhibition of parasite load compared to the negative control. The highest inhibition (66.91%) was exhibited by the 400 mg/kg/day dose of 80% methanolic crude extract. Among the fractions, chloroform fraction demonstrated maximal chemosuppressive effect (55.60%). Moreover, crude extracts and solvent fractions prevented body weight loss, reduction in temperature, and anemia compared to the negative control. Except the aqueous fraction, the tested plant extracts were able to significantly prolong the survival time of infected mice. Conclusion. The findings of the present study confirmed the safety and a promising in vivo antimalarial activity of S. molle, thus supporting the traditional claim and in vitro efficacy. In-depth investigations on the plant, however, are highly recommended.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 532
Author(s):  
Hae-Soo Yun ◽  
Sylvatrie-Danne Dinzouna-Boutamba ◽  
Sanghyun Lee ◽  
Zin Moon ◽  
Dongmi Kwak ◽  
...  

In traditional Chinese medicine, Ranunculus japonicus has been used to treat various diseases, including malaria, and the young stem of R. japonicus is consumed as a food in the Republic of Korea. However, experimental evidence of the antimalarial effect of R. japonicus has not been evaluated. Therefore, the antimalarial activity of the extract of the young stem of R. japonicus was evaluated in vitro using both chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strains; in vivo activity was evaluated in Plasmodium berghei-infected mice via oral administration followed by a four-day suppressive test focused on biochemical and hematological parameters. Exposure to extracts of R. japonicus resulted in significant inhibition of both chloroquine-sensitive (3D7) and resistant (Dd2) strains of P. falciparum, with IC50 values of 6.29 ± 2.78 and 5.36 ± 4.93 μg/mL, respectively. Administration of R. japonicus also resulted in potent antimalarial activity against P. berghei in infected mice with no associated toxicity; treatment also resulted in improved hepatic, renal, and hematologic parameters. These results demonstrate the antimalarial effects of R. japonicus both in vitro and in vivo with no apparent toxicity.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Adewale Adetutu ◽  
Olubukola S. Olorunnisola ◽  
Abiodun O. Owoade ◽  
Peter Adegbola

Launaea taraxacifolia and Amaranthus viridis used by people of Western Africa in the treatment of malaria and related symptoms were assessed for their antiplasmodial value against the chloroquine sensitive strain of Plasmodium berghei. Crude extracts (200 mg/kg) and chloroquine (5 mg/kg) were administered to different groups of Swiss mice. The percentage of parasitemia, survival time, and haematological parameters were determined. Both extracts significantly (p<0.05) inhibited parasitemia and improved survival time in infected mice. The crude extracts prevented loss of some haematological parameters. A. viridis had a distinct effect on the packed cell volume. The extract was able to protect the liver from some of the damage. This study however showed that the methanolic extracts of A. viridis and L. taraxacifolia possess antiplasmodial activity. The results of this study can be used as a basis for further phytochemical investigations in the search for new and locally affordable antimalarial agents.


Author(s):  
Kartika Arum Wardani ◽  
Kholida Nur Aini ◽  
Heny Arwati ◽  
Willy Sandhika

Abstract Sequestration of Plasmodium berghei ANKA-infected erythrocytes occurs in BALB/c mice as characteristic of  Plasmodium falciparum infection in humans. Animals’ bile has been widely used for centuries in Traditional Chinese Medicine. Goat bile has been used in healing infectious and non-infectious diseases; however, no report on the use of goat bile against malaria infection and sequestration. The purpose of this study was to analyze the correlation between parasitemia and sequestration in the liver of P.berghei ANKA-infected BALB/c mice treated with goat bile. This research was an in vivo experimental study using the post-test control group design. The male BALB/c mice aged ± 6 weeks, body weight 20-25 g were used. The mice were divided into five groups where Group 1-3 were mice treated with goat bile 25%, 50%, and 100%, respectively. Group 4-5 were negative (sterile water) and positive controls (DHP). Parasitemia was observed daily from each mouse and the number of sequestered infected erythrocytes on the endothelium of sinusoids. The data were analyzed using t independent test. Antimalarial activity of goat bile was shown by the lower parasitemia in goat bile-treated mice compared with the negative control. The average number of sequestration was goat bile concentration-dependent manner. The higher the concentration, the lower the number of sequestration. Sequestration was correlated with parasitemia (p=0,0001). Sequestration of P.berghei ANKA-infected erythrocytes correlated with parasitemia, and was goat bile concentration-dependent manner. Keywords: Malaria, parasitemia, sequestration, goat bileCorrespondence: [email protected]


2016 ◽  
Vol 41 (2) ◽  
pp. 398-404 ◽  
Author(s):  
Oluwatoyosi Eniola Oyebola ◽  
Olajumoke Abimbola Morenikeji ◽  
Isaiah Oluwafemi Ademola

2019 ◽  
Vol 7 ◽  
pp. 205031211984976 ◽  
Author(s):  
Temesgen Bihonegn ◽  
Mirutse Giday ◽  
Getnet Yimer ◽  
Abebe Animut ◽  
Mekonnen Sisay

Background: Vernonia amygdalina Del. (Asteraceae) is reported to be traditionally used for the treatment of malaria. Based on folkloric repute of this plant in Ethiopian traditional medicine and crude extract-based ethnopharmacological studies conducted in few countries, this study was undertaken to evaluate the in vivo antimalarial activity of 80% methanol extract and its solvent fractions of the leaves of V. amygdalina in mice infected with Plasmodium berghei. Methods: A 4-day suppressive test was conducted on mice infected with P. berghei to find out antimalarial effect of chloroform, butanol and aqueous fractions obtained from the 80% methanol crude extract. In all the activity tests, mice were randomly assigned in five groups (three tests and two controls) of six animals in each and received respective treatments. Data were analyzed using one way analysis of variance followed by Tukey’s post hoc test for multiple comparisons. Results: Acute oral toxicity test showed that all solvent fractions of the leaves of V. amygdalina revealed neither mortality nor overt signs of toxicity up to 2000 mg/kg. This study indicated that the percentage parasitemia suppression of 80% methanol extract was 32.47% (±2.65), 35.40% (±3.14) and 37.67% (±2.50) at 200, 400 and 600 mg/kg, respectively. All doses of the 80% methanol extract of V. amygdalina prolonged survival time and prevented weight loss and packed cell volume reduction in infected mice. All doses of chloroform and butanol fractions significantly suppressed parasitemia (p < 0.05), increased survival time (p < 0.05) compared to negative control and exhibited a significant reduction in rectal temperature (p < 0.05). All solvent fractions significantly prevented weight loss (p < 0.05) at all tested doses. The 80% methanol extract and chloroform and butanol fractions significantly (p < 0.05) prevented further reduction in rectal temperature of P. berghei-infected mice at all doses. Conclusion: The results of this study indicated that 80% methanol extract and solvent fractions of the leaves of V. amygdalina demonstrated promising antimalarial activity. The study corroborated the folklore use of this plant for the treatment of malaria in ethnomedicine in Ethiopia.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Dawit Zewdu Wondafrash ◽  
Dayananda Bhoumik ◽  
Birhanetensay Masresha Altaye ◽  
Helen Bitew Tareke ◽  
Brhane Teklebrhan Assefa

Background. Malaria remains a major worldwide public health problem leading to death of millions of people. Spread and emergence of antimalarial drug resistance are the major challenge in malaria control. Medicinal plants are the key source of new effective antimalarial agents. Cordia africana (Lam.) is widely used for traditional management of malaria by local people in different parts of Ethiopia. The present study aimed to evaluate in vivo antimalarial effects of leaf extracts and solvent fractions of Cordia africana on Plasmodium berghei-infected mice. Methods. The leaf extracts were prepared and tested for oral acute toxicity according to the OECD guideline. In vivo antimalarial effects of various doses of C. africana extracts and solvent fractions were determined using the four-day suppression test (both crude and fractions), as well as curative and chemoprophylactic tests (crude extracts). Results. The acute toxicity test of the plant extract revealed that the medium lethal dose is higher than 2000 mg/kg. The crude extract of the plant exhibited significant parasitemia suppression in the four-day suppression (51.19%), curative (57.14%), and prophylactic (46.48%) tests at 600 mg/kg. The n-butanol fraction exhibited the highest chemosuppression (55.62%) at 400 mg/kg, followed by the chloroform fraction (45.04%) at the same dose. Conclusion. Our findings indicated that both the crude leaf extracts and fractions of C. africana possess antimalarial effects, supporting the traditional claim of the plant.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Noumedem Anangmo Christelle Nadia ◽  
Yamssi Cédric ◽  
Simeni Njonnou Sylvain Raoul ◽  
Ngongang Ouankou Christian ◽  
Mounvera Abdel Azizi ◽  
...  

Background. Malaria is one of the most critical diseases causing about 219 million cases worldwide in developing countries. The spread and development of resistance against chemical antimalarial drugs is one of the major problems associated with malaria control. The present study was to investigate the antimalarial efficacy of ethyl acetate extract and one fraction of Bidens pilosa in vivo in order to support the usage of this plant by traditional healers to treat malaria. Methods. The extracts were prepared by maceration of B. pilosa leaf powder in ethyl acetate. The liquid filtrate of the extract and the best in vitro antiplasmodial fraction using HPLC were concentrated and evaporated using a rotavapor under vacuum to dryness. The antimalarial activity of B. pilosa plant products were evaluated in vivo against Plasmodium berghei infected mice according to the Peter and Rane test. The antimalarial efficacy of the a selected crude extract (ethyl acetate extract) was evaluated at 125, 250, and 500 mg/kg, while a selected fraction from ethyl acetate extract (fraction 12) was evaluated at 62.5 and 125 mg/kg. Blood from experimental animals was collected to assess hematological parameters. Results. The crude extract of ethyl acetate and fraction 12 demonstrated 100% in vivo parasite suppressive activity at doses of 500 mg/kg and 125 mg/kg, respectively, for the crude extract and fraction 12. The mice treated with 250 and 500 mg/kg had their parasitemia (intraerythrocytic phase of P. Berghei) drop considerably, disappearing by the 8th day in mice receiving 500 mg/kg. The ethyl acetate extract of B. pilosa, fraction 12 showed an even higher antiplasmodial activity. By the 5th day of the experiment, the treatment led to a modification of hematological parameters in mice. The chloroquine (5 mg/kg), fraction 12 (125 mg/kg), and the crude extract (500 mg/kg) groups all survived the 30 days of the experiment, while the negative control group registered 100% of the deaths. Conclusion. This study scientifically supports the use of Bidens pilosa leaves in the traditional treatment of malaria. However, the mode of action and in vivo toxicity of the plant still need to be assessed.


2019 ◽  
Vol 24 ◽  
pp. 2515690X1988532 ◽  
Author(s):  
Dagninet Derebe ◽  
Muluken Wubetu

Failure of the efficacy of antimalarial drugs is recognized in different classes of medicines for treating malaria, which urges the need for new drugs. This study tried to check the in vivo antimalarial activity of the root extracts of Acanthus polystachyus Delile against Plasmodium berghei–infected mice. The study revealed that the methanolic crude extract of the root of Acanthus polystachyus Delile showed significant ( P < .01) parasitemia suppressive activities in both models compared with the negative control. Parasitemia suppressive activities were 25.26%, 33.46%, and 51.48% in a 4-day suppressive test and 23.31%, 31.20%, and 43.54% in prophylaxis test at 100, 200, and 400 mg/kg of the extract, respectively, as compared to the negative control. Besides, the extract increases mean survival time significantly in all tested doses in a 4-day suppressive test, but in the prophylaxis model, only mice treated with 200 and 400 mg/kg significantly lived longer. Based on this finding, the root of Acanthus polystachyus Delile has strong antimalarial activity, which may be a good candidate for new antimalarial agents.


Sign in / Sign up

Export Citation Format

Share Document