scholarly journals In utero exposure to cigarette chemicals induces sex-specific disruption of one-carbon metabolism and DNA methylation in the human fetal liver

BMC Medicine ◽  
2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Amanda J Drake ◽  
Peter J O’Shaughnessy ◽  
Siladitya Bhattacharya ◽  
Ana Monteiro ◽  
David Kerrigan ◽  
...  
BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Valentino Palombo ◽  
Abdulrahman Alharthi ◽  
Fernanda Batistel ◽  
Claudia Parys ◽  
Jessie Guyader ◽  
...  

Abstract Background Methionine (Met) supply during late-pregnancy enhances fetal development in utero and leads to greater rates of growth during the neonatal period. Due to its central role in coordinating nutrient and one-carbon metabolism along with immune responses of the newborn, the liver could be a key target of the programming effects induced by dietary methyl donors such as Met. To address this hypothesis, liver biopsies from 4-day old calves (n = 6/group) born to Holstein cows fed a control or the control plus ethyl-cellulose rumen-protected Met for the last 28 days prepartum were used for DNA methylation, transcriptome, metabolome, proteome, and one-carbon metabolism enzyme activities. Results Although greater withers and hip height at birth in Met calves indicated better development in utero, there were no differences in plasma systemic physiological indicators. RNA-seq along with bioinformatics and transcription factor regulator analyses revealed broad alterations in ‘Glucose metabolism’, ‘Lipid metabolism, ‘Glutathione’, and ‘Immune System’ metabolism due to enhanced maternal Met supply. Greater insulin sensitivity assessed via proteomics, and efficiency of transsulfuration pathway activity suggested beneficial effects on nutrient metabolism and metabolic-related stress. Maternal Met supply contributed to greater phosphatidylcholine synthesis in calf liver, with a role in very low density lipoprotein secretion as a mechanism to balance metabolic fates of fatty acids arising from the diet or adipose-depot lipolysis. Despite a lack of effect on hepatic amino acid (AA) transport, a reduction in metabolism of essential AA within the liver indicated an AA ‘sparing effect’ induced by maternal Met. Conclusions Despite greater global DNA methylation, maternal Met supply resulted in distinct alterations of hepatic transcriptome, proteome, and metabolome profiles after birth. Data underscored an effect on maintenance of calf hepatic Met homeostasis, glutathione, phosphatidylcholine and taurine synthesis along with greater efficiency of nutrient metabolism and immune responses. Transcription regulators such as FOXO1, PPARG, E2F1, and CREB1 appeared central in the coordination of effects induced by maternal Met. Overall, maternal Met supply induced better immunometabolic status of the newborn liver, conferring the calf a physiologic advantage during a period of metabolic stress and suboptimal immunocompetence.


2018 ◽  
Author(s):  
Chiara Talia ◽  
Panagiotis Filis ◽  
Ugo Soffientini ◽  
Baltasar Lucendo-Villarin ◽  
Alex Douglas ◽  
...  

Oncogene ◽  
2017 ◽  
Vol 37 (7) ◽  
pp. 963-970 ◽  
Author(s):  
E Cuyàs ◽  
S Fernández-Arroyo ◽  
S Verdura ◽  
R Á-F García ◽  
J Stursa ◽  
...  

2018 ◽  
Vol 19 (10) ◽  
pp. 3106 ◽  
Author(s):  
Kuniyasu Soda

Recent investigations have revealed that changes in DNA methylation status play an important role in aging-associated pathologies and lifespan. The methylation of DNA is regulated by DNA methyltransferases (DNMT1, DNMT3a, and DNMT3b) in the presence of S-adenosylmethionine (SAM), which serves as a methyl group donor. Increased availability of SAM enhances DNMT activity, while its metabolites, S-adenosyl-l-homocysteine (SAH) and decarboxylated S-adenosylmethionine (dcSAM), act to inhibit DNMT activity. SAH, which is converted from SAM by adding a methyl group to cytosine residues in DNA, is an intermediate precursor of homocysteine. dcSAM, converted from SAM by the enzymatic activity of adenosylmethionine decarboxylase, provides an aminopropyl group to synthesize the polyamines spermine and spermidine. Increased homocysteine levels are a significant risk factor for the development of a wide range of conditions, including cardiovascular diseases. However, successful homocysteine-lowering treatment by vitamins (B6, B12, and folate) failed to improve these conditions. Long-term increased polyamine intake elevated blood spermine levels and inhibited aging-associated pathologies in mice and humans. Spermine reversed changes (increased dcSAM, decreased DNMT activity, aberrant DNA methylation, and proinflammatory status) induced by the inhibition of ornithine decarboxylase. The relation between polyamine metabolism, one-carbon metabolism, DNA methylation, and the biological mechanism of spermine-induced lifespan extension is discussed.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Anna K. Knight ◽  
Hea Jin Park ◽  
Dorothy B. Hausman ◽  
Jennifer M. Fleming ◽  
Victoria L. Bland ◽  
...  

2008 ◽  
Vol 66 ◽  
pp. S27-S30 ◽  
Author(s):  
Cornelia M Ulrich ◽  
Michael C Reed ◽  
H Frederik Nijhout

2009 ◽  
Vol 19 (4) ◽  
pp. 215-216 ◽  
Author(s):  
Bernd Lenz ◽  
Carmen Soehngen ◽  
Michael Linnebank ◽  
Annemarie Heberlein ◽  
Helge Frieling ◽  
...  

2009 ◽  
Vol 19 (6) ◽  
pp. 1044-1056 ◽  
Author(s):  
A. L. Brunner ◽  
D. S. Johnson ◽  
S. W. Kim ◽  
A. Valouev ◽  
T. E. Reddy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document