scholarly journals Fine tuning the glycolytic flux ratio of EP-bifido pathway for mevalonate production by enhancing glucose-6-phosphate dehydrogenase (Zwf) and CRISPRi suppressing 6-phosphofructose kinase (PfkA) in Escherichia coli

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Ying Li ◽  
He Xian ◽  
Ya Xu ◽  
Yuan Zhu ◽  
Zhijie Sun ◽  
...  

Abstract Background Natural glycolysis encounters the decarboxylation of glucose partial oxidation product pyruvate into acetyl-CoA, where one-third of the carbon is lost at CO2. We previously constructed a carbon saving pathway, EP-bifido pathway by combining Embden-Meyerhof-Parnas Pathway, Pentose Phosphate Pathway and “bifid shunt”, to generate high yield acetyl-CoA from glucose. However, the carbon conversion rate and reducing power of this pathway was not optimal, the flux ratio of EMP pathway and pentose phosphate pathway (PPP) needs to be precisely and dynamically adjusted to improve the production of mevalonate (MVA). Result Here, we finely tuned the glycolytic flux ratio in two ways. First, we enhanced PPP flux for NADPH supply by replacing the promoter of zwf on the genome with a set of different strength promoters. Compared with the previous EP-bifido strains, the zwf-modified strains showed obvious differences in NADPH, NADH, and ATP synthesis levels. Among them, strain BP10BF accumulated 11.2 g/L of MVA after 72 h of fermentation and the molar conversion rate from glucose reached 62.2%. Second, pfkA was finely down-regulated by the clustered regularly interspaced short palindromic repeats interference (CRISPRi) system. The MVA yield of the regulated strain BiB1F was 8.53 g/L, and the conversion rate from glucose reached 68.7%. Conclusion This is the highest MVA conversion rate reported in shaken flask fermentation. The CRISPRi and promoter fine-tuning provided an effective strategy for metabolic flux redistribution in many metabolic pathways and promotes the chemicals production.

2021 ◽  
Author(s):  
Ying Li ◽  
He Xian ◽  
Ya Xu ◽  
Yuan Zhu ◽  
Zhijie Sun ◽  
...  

Abstract Background Natural glycolysis encounters the decarboxylation of glucose partial oxidation product pyruvate into acetyl-CoA, where one-third of the carbon is lost at CO2. We previously constructed a carbon saving pathway, EP-bifido pathway by combining Embden-Meyerhof-Parnas Pathway, Pentose Phosphate Pathway and “bifid shunt”, to generate high yield acetyl-CoA from glucose. However, the carbon conversion rate and reducing power of this pathway was not optimal, the flux ratio of EMP pathway and pentose phosphate pathway (PPP) needs to be precisely and dynamically adjusted to improve the production of mevalonate (MVA). Result Here, we finely tuned the glycolytic flux ratio in two ways. First, we enhanced PPP flux for NADPH supply by replacing the promoter of zwf on the genome with a set of different strength promoters. Compared with the previous EP-bifido strains, the zwf-modified strains showed obvious differences in NADPH, NADH, and ATP synthesis levels. Among them, strain BP10BF accumulated 11.2 g/L of MVA after 72 h of fermentation and the molar conversion rate from glucose reached 62.2%. Second, pfkA was finely down-regulated by the clustered regularly interspaced short palindromic repeats interference (CRISPRi) system. The MVA yield of the regulated strain BiB1F was 8.53 g/L, and the conversion rate from glucose reached 68.7%. Conclusion This is the highest MVA conversion rate reported in shaken flask fermentation. The CRISPRi and promoter fine-tuning provided an effective strategy for metabolic flux redistribution in many metabolic pathways and promotes the chemicals production.


2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Jing Shen ◽  
Jun Chen ◽  
Christian Solem ◽  
Peter Ruhdal Jensen ◽  
Jian-Ming Liu

ABSTRACT Identifying and overcoming the limitations preventing efficient high-yield production of chemicals remain important tasks in metabolic engineering. In an attempt to rewire Corynebacterium glutamicum to produce ethanol, we attained a low yield (63% of the theoretical) when using resting cells on glucose, and large amounts of succinate and acetate were formed. To prevent the by-product formation, we knocked out the malate dehydrogenase and replaced the native E3 subunit of the pyruvate dehydrogenase complex (PDHc) with that from Escherichia coli, which is active only under aerobic conditions. However, this tampering resulted in a 10-times-reduced glycolytic flux as well as a greatly increased NADH/NAD+ ratio. When we replaced glucose with fructose, we found that the glycolytic flux was greatly enhanced, which led us to speculate whether the source of reducing power could be the pentose phosphate pathway (PPP) that is bypassed when fructose is metabolized. Indeed, after shutting down the PPP by deleting the zwf gene, encoding glucose-6-phosphate dehydrogenase, the ethanol yield on glucose increased significantly, to 92% of the theoretical. Based on that, we managed to rechannel the metabolism of C. glutamicum into d-lactate with high yield, 98%, which is the highest that has been reported. It is further demonstrated that the PPP-inactivated platform strain can offer high-yield production of valuable chemicals using lactose contained in dairy waste as feedstock, which paves a promising way for potentially turning dairy waste into a valuable product. IMPORTANCE The widely used industrial workhorse C. glutamicum possesses a complex anaerobic metabolism under nongrowing conditions, and we demonstrate here that the PPP in resting C. glutamicum is a source of reducing power that can interfere with otherwise redox-balanced metabolic pathways and reduce yields of desired products. By harnessing this physiological insight, we employed the PPP-inactivated platform strains to produce ethanol, d-lactate, and alanine using the dairy waste whey permeate as the feedstock. The production yield was high, and our results show that inactivation of the PPP flux in resting cells is a promising strategy when the aim is to use nongrowing C. glutamicum cells for producing valuable compounds. Overall, we describe the benefits of disrupting the oxidative PPP in nongrowing C. glutamicum and provide a feasible approach toward waste valorization.


2020 ◽  
Author(s):  
Ying Li ◽  
He Xian ◽  
Ya Xu ◽  
Yuan Zhu ◽  
Zhijie Sun ◽  
...  

Abstract Background In natural Escherichia coli, glucose is mainly metabolized via the Embden-Meyerhoff-Parnas (EMP) pathway. However, in the metabolic process of conversion of pyruvate to acetyl-CoA, one-third of the carbon is lost at CO2. To decrease the loss of glucose in the metabolic process and enhance the carbon conversion efficiency production of desired products by E. coli, we constructed a carbon saving pathway, EP-bifido pathway. As the balance of energy and reducing power was not optimal, we use synthetic biology methods to precisely and dynamically adjust the EMP pathway and pentose phosphate pathway (PPP) flux to improve the production of mevalonate (MVA) via the EP-bifido pathway. ResultHere, we enhanced the MVA titer and yield in E. coli in two ways. First, the promoter of the first gene of the PPP, zwf, was replaced with a set of promoters of different strength to enhance PPP flux for NADPH supply. Compared with the previous EP-bifido strains, the zwf-modified strains showed obvious differences in NADPH, NADH, and ATP synthesis levels and production routes. Among them, strain BP10BF accumulated 11.2 g/L of MVA after 72 h of fermentation and the molar conversion rate from glucose reached 62.2%. Second, the expression of pfkA was suppressed at a certain time by the clustered regularly interspaced short palindromic repeats interference (CRISPRi) system to avoid the growth defect caused by pfkA direct knock-out. The resulting MVA yield of strain BiB1F was 8.53 g/L, and the conversion rate from glucose reached 68.7%. ConclusionThis is the highest MVA conversion rate reported in shaken flask fermentation. The CRISPRi and promoter fine-tuning provided an effective strategy for metabolic flux redistribution in many metabolic pathways and promotes the chemicals production.


2006 ◽  
Vol 73 (2) ◽  
pp. 499-507 ◽  
Author(s):  
Oliver Schilling ◽  
Oliver Frick ◽  
Christina Herzberg ◽  
Armin Ehrenreich ◽  
Elmar Heinzle ◽  
...  

ABSTRACT The soil bacterium Bacillus subtilis can use sugars or organic acids as sources of carbon and energy. These nutrients are metabolized by glycolysis, the pentose phosphate pathway, and the Krebs citric acid cycle. While the response of B. subtilis to the availability of sugars is well understood, much less is known about the changes in metabolism if organic acids feeding into the Krebs cycle are provided. If B. subtilis is supplied with succinate and glutamate in addition to glucose, the cells readjust their metabolism as determined by transcriptome and metabolic flux analyses. The portion of glucose-6-phosphate that feeds into the pentose phosphate pathway is significantly increased in the presence of organic acids. Similarly, important changes were detected at the level of pyruvate and acetyl coenzyme A (acetyl-CoA). In the presence of organic acids, oxaloacetate formation is strongly reduced, whereas the formation of lactate is significantly increased. The alsSD operon required for acetoin formation is strongly induced in the presence of organic acids; however, no acetoin formation was observed. The recently discovered phosphorylation of acetolactate decarboxylase may provide an additional level of control of metabolism. In the presence of organic acids, both types of analyses suggest that acetyl-CoA was catabolized to acetate rather than used for feeding the Krebs cycle. Our results suggest that future work has to concentrate on the posttranslational mechanisms of metabolic regulation.


2003 ◽  
Vol 185 (24) ◽  
pp. 7053-7067 ◽  
Author(s):  
Qiang Hua ◽  
Chen Yang ◽  
Tomoya Baba ◽  
Hirotada Mori ◽  
Kazuyuki Shimizu

ABSTRACT The responses of Escherichia coli central carbon metabolism to knockout mutations in phosphoglucose isomerase and glucose-6-phosphate (G6P) dehydrogenase genes were investigated by using glucose- and ammonia-limited chemostats. The metabolic network structures and intracellular carbon fluxes in the wild type and in the knockout mutants were characterized by using the complementary methods of flux ratio analysis and metabolic flux analysis based on [U-13C]glucose labeling and two-dimensional nuclear magnetic resonance (NMR) spectroscopy of cellular amino acids, glycerol, and glucose. Disruption of phosphoglucose isomerase resulted in use of the pentose phosphate pathway as the primary route of glucose catabolism, while flux rerouting via the Embden-Meyerhof-Parnas pathway and the nonoxidative branch of the pentose phosphate pathway compensated for the G6P dehydrogenase deficiency. Furthermore, additional, unexpected flux responses to the knockout mutations were observed. Most prominently, the glyoxylate shunt was found to be active in phosphoglucose isomerase-deficient E. coli. The Entner-Doudoroff pathway also contributed to a minor fraction of the glucose catabolism in this mutant strain. Moreover, although knockout of G6P dehydrogenase had no significant influence on the central metabolism under glucose-limited conditions, this mutation resulted in extensive overflow metabolism and extremely low tricarboxylic acid cycle fluxes under ammonia limitation conditions.


2021 ◽  
Vol 9 (6) ◽  
pp. 1290
Author(s):  
Natalia Alvarez-Santullano ◽  
Pamela Villegas ◽  
Mario Sepúlveda Mardones ◽  
Roberto E. Durán ◽  
Raúl Donoso ◽  
...  

Burkholderia sensu lato (s.l.) species have a versatile metabolism. The aims of this review are the genomic reconstruction of the metabolic pathways involved in the synthesis of polyhydroxyalkanoates (PHAs) by Burkholderia s.l. genera, and the characterization of the PHA synthases and the pha genes organization. The reports of the PHA synthesis from different substrates by Burkholderia s.l. strains were reviewed. Genome-guided metabolic reconstruction involving the conversion of sugars and fatty acids into PHAs by 37 Burkholderia s.l. species was performed. Sugars are metabolized via the Entner–Doudoroff (ED), pentose-phosphate (PP), and lower Embden–Meyerhoff–Parnas (EMP) pathways, which produce reducing power through NAD(P)H synthesis and PHA precursors. Fatty acid substrates are metabolized via β-oxidation and de novo synthesis of fatty acids into PHAs. The analysis of 194 Burkholderia s.l. genomes revealed that all strains have the phaC, phaA, and phaB genes for PHA synthesis, wherein the phaC gene is generally present in ≥2 copies. PHA synthases were classified into four phylogenetic groups belonging to class I II and III PHA synthases and one outlier group. The reconstruction of PHAs synthesis revealed a high level of gene redundancy probably reflecting complex regulatory layers that provide fine tuning according to diverse substrates and physiological conditions.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Pedro Cisternas ◽  
Paulina Salazar ◽  
Carmen Silva-Álvarez ◽  
L. Felipe Barros ◽  
Nibaldo C. Inestrosa

In the last few years, several reports have proposed that Wnt signaling is a general metabolic regulator, suggesting a role for this pathway in the control of metabolic flux. Wnt signaling is critical for several neuronal functions, but little is known about the correlation between this pathway and energy metabolism. The brain has a high demand for glucose, which is mainly used for energy production. Neurons use energy for highly specific processes that require a high energy level, such as maintaining the electrical potential and synthesizing neurotransmitters. Moreover, an important metabolic impairment has been described in all neurodegenerative disorders. Despite the key role of glucose metabolism in the brain, little is known about the cellular pathways involved in regulating this process. We report here that Wnt5a induces an increase in glucose uptake and glycolytic rate and an increase in the activity of the pentose phosphate pathway; the effects of Wnt5a require the intracellular generation of nitric oxide. Our data suggest that Wnt signaling stimulates neuronal glucose metabolism, an effect that could be important for the reported neuroprotective role of Wnt signaling in neurodegenerative disorders.


2013 ◽  
Vol 79 (7) ◽  
pp. 2336-2348 ◽  
Author(s):  
Tanja Hanke ◽  
Katharina Nöh ◽  
Stephan Noack ◽  
Tino Polen ◽  
Stephanie Bringer ◽  
...  

ABSTRACTIn this study, the distribution and regulation of periplasmic and cytoplasmic carbon fluxes inGluconobacter oxydans621H with glucose were studied by13C-based metabolic flux analysis (13C-MFA) in combination with transcriptomics and enzyme assays. For13C-MFA, cells were cultivated with specifically13C-labeled glucose, and intracellular metabolites were analyzed for their labeling pattern by liquid chromatography-mass spectrometry (LC-MS). In growth phase I, 90% of the glucose was oxidized periplasmically to gluconate and partially further oxidized to 2-ketogluconate. Of the glucose taken up by the cells, 9% was phosphorylated to glucose 6-phosphate, whereas 91% was oxidized by cytoplasmic glucose dehydrogenase to gluconate. Additional gluconate was taken up into the cells by transport. Of the cytoplasmic gluconate, 70% was oxidized to 5-ketogluconate and 30% was phosphorylated to 6-phosphogluconate. In growth phase II, 87% of gluconate was oxidized to 2-ketogluconate in the periplasm and 13% was taken up by the cells and almost completely converted to 6-phosphogluconate. SinceG. oxydanslacks phosphofructokinase, glucose 6-phosphate can be metabolized only via the oxidative pentose phosphate pathway (PPP) or the Entner-Doudoroff pathway (EDP).13C-MFA showed that 6-phosphogluconate is catabolized primarily via the oxidative PPP in both phases I and II (62% and 93%) and demonstrated a cyclic carbon flux through the oxidative PPP. The transcriptome comparison revealed an increased expression of PPP genes in growth phase II, which was supported by enzyme activity measurements and correlated with the increased PPP flux in phase II. Moreover, genes possibly related to a general stress response displayed increased expression in growth phase II.


2014 ◽  
Vol 307 (4) ◽  
pp. F435-F444 ◽  
Author(s):  
Joshua A. Smith ◽  
L. Jay Stallons ◽  
Rick G. Schnellmann

While disruption of energy production is an important contributor to renal injury, metabolic alterations in sepsis-induced AKI remain understudied. We assessed changes in renal cortical glycolytic metabolism in a mouse model of sepsis-induced AKI. A specific and rapid increase in hexokinase (HK) activity (∼2-fold) was observed 3 h after LPS exposure and maintained up to 18 h, in association with a decline in renal function as measured by blood urea nitrogen (BUN). LPS-induced HK activation occurred independently of HK isoform expression or mitochondrial localization. No other changes in glycolytic enzymes were observed. LPS-mediated HK activation was not sufficient to increase glycolytic flux as indicated by reduced or unchanged pyruvate and lactate levels in the renal cortex. LPS-induced HK activation was associated with increased glucose-6-phosphate dehydrogenase activity but not glycogen production. Mechanistically, LPS-induced HK activation was attenuated by pharmacological inhibitors of the EGF receptor (EGFR) and Akt, indicating that EGFR/phosphatidylinositol 3-kinase/Akt signaling is responsible. Our findings reveal LPS rapidly increases renal cortical HK activity in an EGFR- and Akt-dependent manner and that HK activation is linked to increased pentose phosphate pathway activity.


2005 ◽  
Vol 71 (12) ◽  
pp. 8587-8596 ◽  
Author(s):  
Judith Becker ◽  
Corinna Klopprogge ◽  
Oskar Zelder ◽  
Elmar Heinzle ◽  
Christoph Wittmann

ABSTRACT The overexpression of fructose 1,6-bisphosphatase (FBPase) in Corynebacterium glutamicum leads to significant improvement of lysine production on different sugars. Amplified expression of FBPase via the promoter of the gene encoding elongation factor TU (EFTU) increased the lysine yield in the feedback-deregulated lysine-producing strain C. glutamicum lysCfbr by 40% on glucose and 30% on fructose or sucrose. Additionally formation of the by-products glycerol and dihydroxyacetone was significantly reduced in the PEFTUfbp mutant. As revealed by 13C metabolic flux analysis on glucose the overexpression of FBPase causes a redirection of carbon flux from glycolysis toward the pentose phosphate pathway (PPP) and thus leads to increased NADPH supply. Normalized to an uptake flux of glucose of 100%, the relative flux into the PPP was 56% for C. glutamicum lysCfbr PEFTUfbp and 46% for C. glutamicum lysCfb r . The flux for NADPH supply was 180% in the PEFTUfbp strain and only 146% in the parent strain. Amplification of FBPase increases the production of lysine via an increased supply of NADPH. Comparative studies with another mutant containing the sod promoter upstream of the fbp gene indicate that the expression level of FBPase relates to the extent of the metabolic effects. The overexpression of FBPase seems useful for starch- and molasses-based industrial lysine production with C. glutamicum. The redirection of flux toward the PPP should also be interesting for the production of other NADPH-demanding compounds as well as for products directly stemming from the PPP.


Sign in / Sign up

Export Citation Format

Share Document