scholarly journals Correction to: The m6A eraser FTO facilitates proliferation and migration of human cervical cancer cells

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Dongling Zou ◽  
Lei Dong ◽  
Chenying Li ◽  
Zhe Yin ◽  
Shuan Rao ◽  
...  
2012 ◽  
Vol 13 (9) ◽  
pp. 4815-4822 ◽  
Author(s):  
Chhavi Sharma ◽  
Qurrat El-Ain Nusri ◽  
Salema Begum ◽  
Elham Javed ◽  
Tahir A. Rizvi ◽  
...  

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Dongling Zou ◽  
Lei Dong ◽  
Chenying Li ◽  
Zhe Yin ◽  
Shuan Rao ◽  
...  

Abstract Background Since FTO was recognized as the first m6A demethylase, the understanding of its biological function has been widely expanded. However, the role of FTO in cervical cancer tumorigenesis remains unclear. Methods In this study, we first analyzed the expression of FTO in two independent human cancer datasets and evaluated the correlation between FTO level and cervical cancer progression. Using small hairpin RNA technology, we explored the function of FTO in cervical cancer cell line Hela and SiHa cells, respectively. We then determined the FTO targets by performing transcriptional profile with FTO deficient and competent Hela cells, and finally validated these targets with ribosome profiling and functional rescue experiments. Results Our data suggested that FTO was frequently overexpressed in human cervical cancer tissues and highly correlated with cervical cancer progression. FTO serves as an oncogenic regulator for cervical cancer cells’ proliferation and migration which is vastly depended on its demethylase activity. Mechanistically, FTO interacts with transcripts of E2F1 and Myc, inhibition of FTO significantly impairs the translation efficiency of E2F1 and Myc, however, either overexpress E2F1 or Myc sufficiently compensates the FTO deficiency which decreases cell proliferation and migration. Conclusions Our study indicates that FTO plays important oncogenic role in regulating cervical cancer cells’ proliferation and migration via controlling m6A modification of E2F1 and Myc transcripts. FTO represents a potential drug candidate for cervical cancer therapy.


2018 ◽  
Vol 18 (3) ◽  
pp. 412-421 ◽  
Author(s):  
Madhumitha Kedhari Sundaram ◽  
Mohammad Zeeshan Ansari ◽  
Abdullah Al Mutery ◽  
Maryam Ashraf ◽  
Reem Nasab ◽  
...  

Introduction: Epidemiological studies indicate that diet rich in fruits and vegetables is associated with decreased cancer risk thereby indicating that dietary polyphenols can be potential chemo-preventive agents. The reversible nature of epigenetic modifications makes them a favorable target for cancer prevention. Polyphenols have been shown to reverse aberrant epigenetic patterns by targeting the regulatory enzymes, DNA methyltransferases (DNMTs) and histone deacetylases (HDACs). In vitro and in silico studies of DNMTs and HDACs were planned to examine genistein’s role as a natural epigenetic modifier in human cervical cancer cells, HeLa. Methods: Expression of the tumour suppressor genes (TSGs) [MGMT, RARβ, p21, E-cadherin, DAPK1] as well the methylation status of their promoters were examined alongwith the activity levels of DNMT and HDAC enzymes after treatment with genistein. Expression of DNMTs and HDACs was also studied. In-silico studies were performed to determine the interaction of genistein with DNMTs and HDACs. Results: Genistein treatment significantly reduced the expression and enzymatic activity of both DNMTs and HDACs in a time-dependent way. Molecular modeling data suggest that genistein can interact with various members of DNMT and HDAC families and support genistein mediated inhibition of their activity. Timedependent exposure of genistein reversed the promoter region methylation of the TSGs and re-established their expression. Conclusions: In this study, we find that genistein is able to reinstate the expression of the TSGs studied by inhibiting the action of DNMTs and HDACs. This shows that genistein could be an important arsenal in the development of epigenetic based cancer therapy.


2010 ◽  
Vol 49 (4) ◽  
pp. 419-424 ◽  
Author(s):  
Wei-Chun Chang ◽  
Ching-Hung Hsieh ◽  
Meen-Woon Hsiao ◽  
Wu-Chou Lin ◽  
Yao-Ching Hung ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 5230-5230
Author(s):  
Laura Fisher

Retraction of ‘RNA-sequencing identified miR-3681 as a negative regulator in the proliferation and migration of cervical cancer cells via the posttranscriptional suppression of HGFR’ by Fan Shi et al., RSC Adv., 2019, 9, 22376–22383, DOI: 10.1039/C9RA01785B.


Sign in / Sign up

Export Citation Format

Share Document