scholarly journals Impact of cattle on the abundance of indoor and outdoor resting malaria vectors in southern Malawi

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Monicah M. Mburu ◽  
Kennedy Zembere ◽  
Themba Mzilahowa ◽  
Anja D. Terlouw ◽  
Tumaini Malenga ◽  
...  

Abstract Background Understanding the blood feeding preferences and resting habits of malaria vectors is important for assessing and designing effective malaria vector control tools. The presence of livestock, such as cattle, which are used as blood meal hosts by some malaria vectors, may impact malaria parasite transmission dynamics. The presence of livestock may provide sufficient blood meals for the vectors, thereby reducing the frequency of vectors biting humans. Alternatively, the presence of cattle may enhance the availability of blood meals such that infectious mosquitoes may survive longer, thereby increasing the risk of malaria transmission. This study assessed the effect of household-level cattle presence and distribution on the abundance of indoor and outdoor resting malaria vectors. Methods Houses with and without cattle were selected in Chikwawa district, southern Malawi for sampling resting malaria vectors. Prokopack aspirators and clay pots were used for indoor and outdoor sampling, respectively. Each house was sampled over two consecutive days. For houses with cattle nearby, the number of cattle and the distances from the house to where the cattle were corralled the previous night were recorded. All data were analysed using generalized linear models fitted with Poisson distribution. Results The malaria vectors caught resting indoors were Anopheles gambiae sensustricto (s.s.), Anopheles arabiensis and Anopheles funestuss.s. Outdoor collections consisted primarily of An. arabiensis. The catch sizes of indoor resting An. gambiae sensulato (s.l.) were not different in houses with and without cattle (P = 0.34). The presence of cattle near a house was associated with a reduction in the abundance of indoor resting An. funestuss.l. (P = 0.04). This effect was strongest when cattle were kept overnight ≤ 15 m away from the houses (P = 0.03). The blood meal hosts varied across the species. Conclusion These results highlight differences between malaria vector species and their interactions with potential blood meal hosts, which may have implications for malaria risk. Whereas An. arabiensis remained unaffected, the reduction of An. funestuss.s. in houses near cattle suggests a potential protective effect of cattle. However, the low abundance of mosquitoes reduced the power of some analyses and limited the generalizability of the results to other settings. Therefore, further studies incorporating the vectors’ host-seeking behaviour/human biting rates are recommended to fully support the primary finding.

2019 ◽  
Author(s):  
Maxwell G. Machani ◽  
Eric Ochomo ◽  
Fred Amimo ◽  
Jackline Kosgei ◽  
Stephen Munga ◽  
...  

AbstractBackgroundUnderstanding the interactions between increased insecticide resistance in field malaria vector populations and the subsequent resting behaviour patterns is important for planning adequate vector control measures in a specific context and sustaining the current vector interventions. The aim of this study was to investigate the resting behavior, host preference and infection with Plasmodium falciparum sporozoites by malaria vectors in different ecological settings of western Kenya with different levels of insecticide resistance.MethodsIndoor and outdoor resting Anopheline mosquitoes were sampled during the dry and rainy seasons in Kisian (lowland site) and Bungoma (highland site), both in western Kenya. WHO tube bioassay was used to determine levels of phenotypic resistance of first generation offspring (F1 progeny) of malaria vectors resting indoors and outdoors to deltamethrin. PCR-based molecular diagnostics were used for mosquito speciation, genotype for resistance mutations and to determine specific host blood meal origins. Enzyme-linked Immunosorbent Assay (ELISA) was used to determine mosquito sporozoite infections.ResultsOverall, 3,566 female Anopheles mosquitoes were collected with Anopheles gambiae s.l [In Bungoma, An. gambiae s.s (90.9%), An arabiensis (7.6%) and in Kisian, An. gambiae s.s (38.9%), An. arabiensis (60.2%)] being the most abundant species (74.7%) followed by An. funestus s.l (25.3%). The majority of An. gambiae s.l (85.4 and 58%) and An. funestus (96.6 and 91.1%) were caught resting indoors in Bungoma and Kisian respectively.Vgsc-1014S was observed at a slightly higher frequency in An. gambiae s.s hereafter(An. gambiae) resting indoor than outdoor (89.7 vs 84.6% and 71.5 vs 61.1%) in Bungoma and Kisian respectively. For An. arabiensis, Vgsc-1014S was 18.2% indoor and outdoor (17.9%) in Kisian. In Bungoma, the Vgsc-1014S was only detected in An. arabiensis resting indoors with a frequency of 10%. The Vgsc-1014F mutation was only present in An. gambiae resting indoors from both sites, but at very low frequencies in Kisian compared to Bungoma (0.8 and 9.2% respectively. In Bungoma, the sporozoite rates for An. funestus, An. gambiae, and An. arabiensis resting indoors were 10.9, 7.6 and 3.4 % respectively. For outdoor resting, An. gambiae and An. arabiensis in Bungoma, the sporozoite rates were 4.7 and 2.9 % respectively.Overall, in Bungoma, the sporozoite rate for indoor resting mosquitoes was 8.6% and 4.2% for outdoors. In Kisian the sporozoite rate was 0.9% for indoor resting An. gambiae. None of the outdoor collected mosquitoes in Kisian tested positive for sporozoite infections.ConclusionThe study reports high densities of insecticide-resistant An. gambiae and An. funestus resting indoors and the persistence of malaria transmission indoors with high entomological inoculation rates (EIR) regardless of the use of Long-lasting insecticidal nets (LLINs). These findings underline the difficulties of controlling malaria vectors resting and biting indoors using the current interventions. Supplemental vector control tools and implementation of sustainable insecticide resistance management strategies are needed in western Kenya.


2020 ◽  
Author(s):  
Catherine L. Moyes ◽  
Rosemary S. Lees ◽  
Cristina Yunta ◽  
Kyle J. Walker ◽  
Kay Hemmings ◽  
...  

Abstract The primary malaria control intervention in high burden countries is the deployment of long-lasting insecticide-treated nets (LLINs) treated with pyrethroids, alone or in combination with a second active ingredient or synergist. It is essential to understand whether the impact of pyrethroid resistance can be mitigated by switching between different pyrethroids or whether cross-resistance precludes this. Structural diversity within the pyrethroids could mean some compounds are better able to counteract the resistance mechanisms that have evolved in malaria vectors. Here we consider variation in vulnerability to the P450 enzymes that confer metabolic pyrethroid resistance in Anopheles gambiae s.l. and Anopheles funestus. We assess the relationships among pyrethroids in terms of their binding affinity to key P450s and the percent dep­letion by these P450s, in order to identify which pyrethroids diverge from the others. We then investigate whether these same pyrethroids also diverge from the others in terms of resistance in vector populations. We found that etofenprox, which lacks the common structural moiety of other pyrethroids, potentially diverges from the commonly deployed pyrethroids in terms of P450 binding affinity and resistance in malaria vector populations, but not depletion by the P450s tested. These results are supplemented by an analysis of resistance to the same pyrethroids in Aedes aegypti populations, which also found etofenprox diverges from the other pyrethroids in terms of resistance in wild populations. In addition, we found that bifenthrin, which also lacks the common structural moiety of most pyrethroids, diverges from the commonly deployed pyrethroids in terms of P450 binding affinity and depletion by P450s. However, resistance to bifenthrin in vector populations is largely untested. The prevalence of resistance to the pyrethroids α-cypermethrin, cyfluthrin, deltamethrin, λ-cyhalothrin, and permethrin was correlated across malaria vector populations and switching between these compounds as a tool to mitigate against pyrethroid resistance is not advised without strong evidence supporting a true difference in resistance.


Acta Tropica ◽  
1994 ◽  
Vol 58 (3-4) ◽  
pp. 307-316 ◽  
Author(s):  
A.K. Githeko ◽  
M.W. Service ◽  
C.M. Mbogo ◽  
F.K. Atieli ◽  
F.O. Juma

2020 ◽  
Author(s):  
Mary Wanjiku Nyangi ◽  
Elizabeth Mumbi Kigondu ◽  
Beatrice Irungu ◽  
Margaret Nganga ◽  
Anthony Gachanja ◽  
...  

Abstract Background: Vector control is an essential component in prevention and control of malaria in malaria endemic areas. Insecticide treated nets is one of the standard tools recommended for malaria vector control. The objective of the study was to determine physical integrity and insecticidal potency of long-lasting insecticidal nets (LLINs) used in control of malaria vector in Kirinyaga County, Kenya.Method: The study targeted households in an area which had received LLINs during mass net distribution in 2016 from Ministry of Health. A total of 420 households were sampled using systematic sampling method, where the household heads consented to participate in the study. A semi-structured questionnaire was administered to assess care and use while physical examination was used to determine integrity. Chemical potency was determined by gas chromatography mass spectroscopy (GC-MS). Data analysis was done using Statistical Package for Social Sciences (SPSS) version 19. Results: After eighteen months of use, 96.9% (95% CI: 95.2% – 98.6%) of the distributed nets were still available. Regarding the net utilization, 94.1% of household heads reported sleeping under an LLIN the previous night. After physical examination, 49.9% (95% CI: 43% - 52.8%) of the bed nets had at least one hole. The median number of holes of any size was 2[interquartile range (IQR) 1-4], and most holes were located on the lower part of the nets, [median 3 (IQR 2-5)]. Only 15% of the nets with holes had been repaired. The median concentration for alpha-cypermethrin was 7.15mg/m2 (IQR 4.25-15.31) and 0.00mg/g (IQR 0.00-1.99) for permethrin. Based on pHI, Chi-square test varied significantly with the manufacturer (X (6, N=389) = 29.14, p = 0.04). There was no significant difference between nets with different number of washes (X2(2) = 4.55, p = 0.103).Conclusion: More than three-quarters of the nets supplied had survived and insecticidal potency was adequate in vector control. 14.2% of the nets were too torn and required immediate replacement. Studies for validated field evaluation of surface insecticidal content available to a mosquito after landing on a net to rest should be developed.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Guofa Zhou ◽  
Eugenia Lo ◽  
Andrew K. Githeko ◽  
Yaw A. Afrane ◽  
Guiyun Yan

AbstractThe issues of pyrethroid resistance and outdoor malaria parasite transmission have prompted the WHO to call for the development and adoption of viable alternative vector control methods. Larval source management is one of the core malaria vector interventions recommended by the Ministry of Health in many African countries, but it is rarely implemented due to concerns on its cost-effectiveness. New long-lasting microbial larvicide can be a promising cost-effective supplement to current vector control and elimination methods because microbial larvicide uses killing mechanisms different from pyrethroids and other chemical insecticides. It has been shown to be effective in reducing the overall vector abundance and thus both indoor and outdoor transmission. In our opinion, the long-lasting formulation can potentially reduce the cost of larvicide field application, and should be evaluated for its cost-effectiveness, resistance development, and impact on non-target organisms when integrating with other malaria vector control measures. In this opinion, we highlight that long-lasting microbial larvicide can be a potential cost-effective product that complements current front-line long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) programs for malaria control and elimination. Microbial larviciding targets immature mosquitoes, reduces both indoor and outdoor transmission and is not affected by vector resistance to synthetic insecticides. This control method is a shift from the conventional LLINs and IRS programs that mainly target indoor-biting and resting adult mosquitoes.


PLoS ONE ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. e0224718 ◽  
Author(s):  
Maxwell G. Machani ◽  
Eric Ochomo ◽  
Fred Amimo ◽  
Jackline Kosgei ◽  
Stephen Munga ◽  
...  

Heredity ◽  
2020 ◽  
Vol 124 (5) ◽  
pp. 621-632 ◽  
Author(s):  
Magellan Tchouakui ◽  
Jacob Riveron Miranda ◽  
Leon M. J. Mugenzi ◽  
Doumani Djonabaye ◽  
Murielle J. Wondji ◽  
...  

Abstract Metabolic resistance threatens the sustainability of pyrethroid-based malaria control interventions. Elucidating the fitness cost and potential reversal of metabolic resistance is crucial to design suitable resistance management strategies. Here, we deciphered the fitness cost associated with the CYP6P9a (P450-mediated metabolic resistance) in the major African malaria vector Anopheles funestus. Reciprocal crosses were performed between a pyrethroid susceptible (FANG) and resistant (FUMOZ-R) laboratory strains and the hybrid strains showed intermediate resistance. Genotyping the CYP6P9a-R resistance allele in oviposited females revealed that CYP6P9a negatively impacts the fecundity as homozygote susceptible mosquitoes (CYP6P9a-SS) lay more eggs than heterozygote (OR = 2.04: P = 0.01) and homozygote resistant mosquitoes. CYP6P9a also imposes a significant fitness cost on the larval development as homozygote resistant larvae (CYP6P9a-RR) developed significantly slower than heterozygote and homozygote susceptible mosquitoes (χ2 = 11.2; P = 0.0008). This fitness cost was further supported by the late pupation of homozygote resistant than susceptible mosquitoes (OR = 2.50; P < 0.01). However, CYP6P9a does not impact the longevity as no difference was observed in the life span of mosquitoes with different genotypes (χ2 = 1.6; P = 0.9). In this hybrid strain, a significant decrease of the resistant CYP6P9a-RR genotype was observed after ten generations (χ2 = 6.6; P = 0.01) suggesting a reversal of P450-based resistance in the absence of selection. This study shows that the P450-mediated metabolic resistance imposes a high fitness cost in malaria vectors supporting that a resistance management strategy based on rotation could help mitigate the impact of such resistance.


2019 ◽  
Author(s):  
D.D Soma ◽  
B Zogo ◽  
P Taconet ◽  
A Somé ◽  
S Coulibaly ◽  
...  

AbstractBackgroundTo sustain the efficacy of malaria vector control, the World Health Organization (WHO) recommends the combination of effective tools. Before designing and implementing additional strategies in any setting, it is critical to monitor or predict when and where transmission occurs. However, to date, very few studies have quantified the behavioural interactions between humans and Anopheles vectors. Here, we characterized residual transmission in a rural area of Burkina Faso where long lasting insecticidal nets (LLIN) are widely used.MethodsWe analysed data on both human and malaria vectors behaviours from 27 villages to measure hourly human exposure to vector bites in dry and rainy seasons using mathematical models. We estimated the protective efficacy of LLINs and characterised where (indoors vs. outdoors) and when both LLIN users and non-users were exposed to vector bites.ResultsThe percentage of the population who declared sleeping under a LLIN the previous night was very high regardless of the season, with an average LLIN use ranging from 92.43% to 99.89%. The use of LLIN provided > 80% protection against exposure to vector bites. The proportion of exposure for LLIN users was 29-57% after 05:00 and 0.05-12 % before 20:00. More than 80% of exposure occurred indoors for LLIN users and the estimate reached 90% for children under five years old in the dry cold season.ConclusionsThis study supports the current use of LLIN as a primary malaria vector control tool. It also emphasises the need to complement LLIN with indoor-implemented measures such as indoor residual spraying (IRS) and/or house improvement to effectively combat malaria in the rural area of Diébougou. Furthermore, malaria elimination programmes would also require strategies that target outdoor biting vectors to be successful in the area.


2020 ◽  
Author(s):  
Corine Ngufor ◽  
Renaud Govoetchan ◽  
Augustin Fongnikin ◽  
Estelle Vigninou ◽  
Thomas Syme ◽  
...  

AbstractThe rotational use of insecticides with different modes of action for indoor residual spraying (IRS) is recommended for improving malaria vector control and managing insecticide resistance. A more diversified portfolio of IRS insecticides is required; insecticides with new chemistries which can provide improved and prolonged control of insecticide-resistant vector populations are urgently needed. Broflanilide is a newly discovered insecticide being considered for malaria vector control. We investigated the efficacy of a wettable powder (WP) formulation of broflanilide (VECTRON™ T500) for IRS on mud and cement wall substrates in WHO laboratory and experimental hut studies against pyrethroid-resistant malaria vectors in Benin, in comparison with pirimiphos-methyl CS (Actellic® 300CS). There was no evidence of cross-resistance to pyrethroids and broflanilide in CDC bottle bioassays. In laboratory cone bioassays, mortality of susceptible and pyrethroid-resistant A. gambiae s.l. with broflanilide WP treated substrates was >80% for 6-14 months. At application rates of 100mg/m2 and 150 mg/m2, mortality of wild pyrethroid-resistant A. gambiae s.l. entering treated experimental huts in Covè, Benin was 57%-66% with broflanilide WP and did not differ significantly from pirimiphos-methyl CS (57-66% vs. 56%, P>0.05). Mosquito mortality did not differ between the two application rates and local wall substrate-types tested (P>0.05). Throughout the 6-month hut trial, monthly wall cone bioassay mortality on broflanilide WP treated hut walls remained >80% for both susceptible and resistant strains of A. gambiae s.l.. Broflanilide shows potential to significantly improve the control of malaria transmitted by pyrethroid-resistant mosquito vectors and would thus be a crucial addition to the current portfolio of IRS insecticides.One Sentence SummaryVECTRON™ T500, a new wettable powder formulation of broflanilide developed for indoor residual spraying, showed high and prolonged activity against wild pyrethroid-resistant malaria vectors, on local wall substrates, in laboratory bioassays and experimental household settings in Benin.


Sign in / Sign up

Export Citation Format

Share Document