scholarly journals CircWAC induces chemotherapeutic resistance in triple-negative breast cancer by targeting miR-142, upregulating WWP1 and activating the PI3K/AKT pathway

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Lei Wang ◽  
Yehui Zhou ◽  
Liang Jiang ◽  
Linlin Lu ◽  
Tiantian Dai ◽  
...  

Abstract Background Chemotherapeutic resistance is the main cause of clinical treatment failure and poor prognosis in triple-negative breast cancer (TNBC). There is no research on chemotherapeutic resistance in TNBC from the perspective of circular RNAs (circRNAs). Methods TNBC-related circRNAs were identified based on the GSE101124 dataset. Quantitative reverse transcription PCR was used to detect the expression level of circWAC in TNBC cells and tissues. Then, in vitro and in vivo functional experiments were performed to evaluate the effects of circWAC in TNBC. Results CircWAC was highly expressed in TNBC and was associated with worse TNBC patient prognosis. Subsequently, it was verified that downregulation of circWAC can increase the sensitivity of TNBC cells to paclitaxel (PTX) in vitro and in vivo. The expression of miR-142 was negatively correlated with circWAC in TNBC. The interaction between circWAC and miR-142 in TNBC cells was confirmed by RNA immunoprecipitation assays, luciferase reporter assays, pulldown assays, and fluorescence in situ hybridization. Mechanistically, circWAC acted as a miR-142 sponge to relieve the repressive effect of miR-142 on its target WWP1. In addition, the overall survival of TNBC patients with high expression of miR-142 was significantly better than that of patients with low expression of miR-142, and these results were verified in public databases. MiR-142 regulated the expression of WWP1 and the activity of the PI3K/AKT pathway. It was confirmed that WWP1 is highly expressed in TNBC and that the prognosis of patients with high WWP1 expression is poor. Conclusions CircWAC/miR-142/WWP1 form a competing endogenous RNA (ceRNA) network to regulate PI3K/AKT signaling activity in TNBC cells and affect the chemosensitivity of cells.

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Ya Fan ◽  
Jia Wang ◽  
Wen Jin ◽  
Yifei Sun ◽  
Yuemei Xu ◽  
...  

Abstract Background E3 ubiquitin ligase HRD1 (HMG-CoA reductase degradation protein 1, alias synoviolin with SYVN1 as the official gene symbol) was found downregulated and acting as a tumor suppressor in breast cancer, while the exact expression profile of HRD1 in different breast cancer subtypes remains unknown. Recent studies characterized circular RNAs (circRNAs) playing an regulatory role as miRNA sponge in tumor progression, presenting a new viewpoint for the post-transcriptional regulation of cancer-related genes. Methods Examination of the expression of HRD1 protein and mRNA was implemented using public microarray/RNA-sequencing datasets and breast cancer tissues/cell lines. Based on public RNA-sequencing results, online databases and enrichment/clustering analyses were used to predict the specific combinations of circRNA/miRNA that potentially govern HRD1 expression. Gain-of-function and rescue experiments in vitro and in vivo were executed to evaluate the suppressive effects of circNR3C2 on breast cancer progression through HRD1-mediated proteasomal degradation of Vimentin, which was identified using immunoblotting, immunoprecipitation, and in vitro ubiquitination assays. Results HRD1 is significantly underexpressed in triple-negative breast cancer (TNBC) against other subtypes and has an inverse correlation with Vimentin, inhibiting the proliferation, migration, invasion and EMT (epithelial-mesenchymal transition) process of breast cancer cells via inducing polyubiquitination-mediated proteasomal degradation of Vimentin. CircNR3C2 (hsa_circ_0071127) is also remarkably downregulated in TNBC, negatively correlated with the distant metastasis and lethality of invasive breast carcinoma. Overexpressing circNR3C2 in vitro and in vivo leads to a crucial enhancement of the tumor-suppressive effects of HRD1 through sponging miR-513a-3p. Conclusions Collectively, we elucidated a bona fide circNR3C2/miR-513a-3p/HRD1/Vimentin axis that negatively regulates the metastasis of TNBC, suggesting that circNR3C2 and HRD1 can act as potential prognostic biomarkers. Our study may facilitate the development of therapeutic agents targeting circNR3C2 and HRD1 for patients with aggressive breast cancer.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Yuxiang Lin ◽  
Jie Zhang ◽  
Yan Li ◽  
Wenhui Guo ◽  
Lili Chen ◽  
...  

Abstract Background Cytidine nucleotide triphosphate synthase 1 (CTPS1) is a CTP synthase which play critical roles in DNA synthesis. However, its biological regulation and mechanism in triple-negative breast cancer (TNBC) has not been reported yet. Methods The expression of CTPS1 in TNBC tissues was determined by GEO, TCGA databases and immunohistochemistry (IHC). The effect of CTPS1 on TNBC cell proliferation, migration, invasion, apoptosis and tumorigenesis were explored in vivo and in vitro. In addition, the transcription factor Y-box binding protein 1 (YBX1) was identified by bioinformatics methods, dual luciferase reporter and chromatin immunoprecipitation (CHIP) assays. Pearson correlation analysis was utilized to assess the association between YBX1 and CTPS1 expression. Results CTPS1 expression was significantly upregulated in TNBC tissues and cell lines. Higher CTPS1 expression was correlated with a poorer disease-free survival (DFS) and overall survival (OS) in TNBC patients. Silencing of CTPS1 dramatically inhibited the proliferation, migration, invasion ability and induced apoptosis of MDA-MB-231 and HCC1937 cells. Xenograft tumor model also indicated that CTPS1 knockdown remarkably reduced tumor growth in mice. Mechanically, YBX1 could bind to the promoter of CTPS1 to promote its transcription. Furthermore, the expression of YBX1 was positively correlated with CTPS1 in TNBC tissues. Rescue experiments confirmed that the enhanced cell proliferation and invasion ability induced by YBX1 overexpression could be reversed by CTPS1 knockdown. Conclusion Our data demonstrate that YBX1/CTPS1 axis plays an important role in the progression of TNBC. CTPS1 might be a promising prognosis biomarker and potential therapeutic target for patients with triple-negative breast cancer.


Author(s):  
Yihong Huang ◽  
Shuo Zheng ◽  
Ying Lin ◽  
Liming Ke

Triple negative breast cancer (TNBC) is an aggressive histological subtype of breast cancer. It has been reported that that circRNA circ-ERBB2 (circBase ID: hsa_circ_0007766) is mainly distributed in the cytoplasm of TNBC cells and promotes the proliferation and invasion of TNBC cells. This study aimed to explore the molecular mechanism of circ-ERBB2 regulating the progression of TNBC. Expression of circ-ERBB2 was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Loss-of-function experiments were performed to investigate the function of circ-ERBB2 in TNBC cells in vitro and in vivo . The regulatory mechanism of circ-ERBB2 was surveyed by bioinformatics analysis, dual-luciferase reporter and RNA immunoprecipitation (RIP) or RNA pull-down assays. We observed that Circ-ERBB2 was overexpressed in TNBC, and TNBC patients with high circ-ERBB2 expression had a poor prognosis. Functionally, circ-ERBB2 knockdown constrained TNBC growth in vivo and reduced Warburg effect, accelerated apoptosis, repressed proliferation, migration, and invasion of TNBC cell in vitro . Mechanically, circ-ERBB2 sponged miR-136-5p to elevate pyruvate dehydrogenase kinase 4 (PDK4) expression. In conclusion, circ-ERBB2 facilitated Warburg effect and malignancy of TNBC cells by the miR-136-5p/PDK4 pathway, at least in part. This study supported circ-ERBB2 as a prognostic indicator for TNBC.


2021 ◽  
Author(s):  
Yuxiang Lin ◽  
Jie Zhang ◽  
Yan Li ◽  
Wenhui Guo ◽  
Lili Chen ◽  
...  

Abstract Background: Cytidine nucleotide triphosphate synthase 1 (CTPS1) is a CTP synthase which play critical roles in DNA synthesis. However, its biological regulation and mechanism in triple-negative breast cancer (TNBC) has never been reported yet.Methods: The expression of CTPS1 in TNBC tissues was determined by GEO, TCGA databases and immunohistochemistry (IHC). The effect of CTPS1 on TNBC cell proliferation, migration, invasion, apoptosis and tumorigenesis were explored in vivo and in vitro. In addition, the transcription factor Y-box binding protein 1 (YBX1) was identifed by bioinformatics methods, dual luciferase reporter and chromatin immunoprecipitation (CHIP) assays. Pearson correlation analysis was utilized to assess the association between YBX1 and CTPS1 expression. Results: CTPS1 expression was significantly upregulated in TNBC tissues and cell lines. Higher CTPS1 expression was correlated with a poorer disease-free survival (DFS) and overall survival (OS) in TNBC patients. Silencing of CTPS1 dramatically inhibited the proliferation, migration, invasion ability and induced apoptosis of MDA-MB-231 and HCC1937 cells. Xenograft tumor model also indicated that CTPS1 knockdown remarkably reduced tumor growth in mice. Mechanically, YBX1 could bind to the promoter of CTPS1 to promote its transcription. Furthermore, the expression of YBX1 was positively correlated with CTPS1 in TNBC tissues. Rescue experiments confirmed that the enhanced cell proliferation and invasion ability induced by YBX1 overexpression could be reversed by CTPS1 knockdown. Conclusion: Our data demonstrate that YBX1/CTPS1 axis plays an important role in the progression of TNBC. CTPS1 might be a promising prognosis biomarker and potential therapeutic target for patients with triple-negative breast cancer.


2021 ◽  
Author(s):  
Qiu Jin ◽  
Bo Lin ◽  
Wenhui Zhao ◽  
Runyuan Ji

Abstract BackgroundMany studies indicate that microRNAs (miRNAs) play a crucial role in modulating the development and progression of triple-negative breast cancer (TNBC). However, miR-664b-3p affections on the TNBC functions and mechanisms are still unknown. The purpose of our study was to clarify the effects of miR-664b-3p in cellular TNBC development and progression.MethodsIn our study, the expressions of miR-664b-3p in cell lines and tissueswere tested by real-time PCR (RT-PCR), immunofluorescence, H&E and immunohistochemistry staining. CCK-8 assay, colony formation, EdU, flow cytometry apoptosis, wound scratch, Transwell assays were applied to explore the cell functions. The targeted relationship between miR-664b-3p and its target BRIP1 was determined by dual-luciferase reporter assay and rescue experiments. ResultsWe observed that miR-664b-3p was significantly decreased in TNBC cell lines. Overexpression of miR-664b-3p could observably inhibit cell proliferation, migration, invasion and induced apoptosis in vitro. Meanwhile, miR-664-3p suppressed TNBC tumor growth in vivo. Furthermore, luciferase reporter assays identified the interaction between 3’UTR of BRIP1 and miR-664b-3p. Moreover, we investigated the mechanisms underlying the effect of miR-664b-3p on cell functions, and the result showed that miR-664b-3p inhibited cell proliferation, invasion and accelerated apoptosis by targeting BRIP1.ConclusionFrom the above, our findings indicated that miR-664b-3p played a significant role in TNBC progression by targeting BRIP1, providing new therapeutic targets for diagnostic in TNBC.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Xiaohui Zhang ◽  
Fangyuan Li ◽  
Yidong Zhou ◽  
Feng Mao ◽  
Yan Lin ◽  
...  

AbstractLong noncoding ribonucleic acids (LncRNAs) have been found to be involved in the proliferation, apoptosis, invasion, migration, and other pathological processes of triple-negative breast cancer (TNBC). Expression of the lncRNA actin filament-associated protein 1 antisense RNA1 (AFAP1-AS1) has been found to be significantly higher in TNBC than in other subtypes or in normal tissue samples, but the specific mechanism by which AFAP1-AS1 affects the occurrence and development of TNBC is yet to be revealed. In this study, we used Cell Counting Kit-8 (CCK-8), colony formation, wound healing migration, Transwell invasion, and nude mouse xenograft assays to confirm the role of AFAP1-AS1 in the proliferation, migration of TNBC cells in vitro and in vivo. In addition, we performed bioinformatics analyses, reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), western blot (WB), and dual-luciferase reporter assays (dual-LRA) to confirm interaction among AFAP1-AS1, micro-RNA 2110 (miR-2110), and Sp1 transcription factor (Sp1). We found that silencing AFAP1-AS1 and Sp1 or upregulating miR-2110 suppressed the proliferation, migration, and invasion of MDA–MB-231 and MDA–MB-468 cells in vitro as well as tumor growth in vivo. Mechanistically, the dual-LRA highlighted that miR-2110 was an inhibitory target of AFAP1-AS1, and that AFAP1-AS1 functioned as a miR-2110 sponge to increase Sp1 expression. AFAP1-AS1 silencing led to a reduction in Sp1 mRNA and protein levels, which could be reversed by joint transfection with miR-2110 inhibitor. Our findings demonstrated that AFAP1-AS1 could modulate the progression of breast cancer cells and affect tumorigenesis in mice by acting as a miR-2110 sponge, resulting in regulation of Sp1 expression. Therefore, AFAP1-AS1 could play a pivotal role in the treatment of TNBC.


2021 ◽  
Vol 11 ◽  
Author(s):  
Juanjuan He ◽  
Jing Wang ◽  
Teng Li ◽  
Kunlun Chen ◽  
Songchao Li ◽  
...  

BackgroundTriple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer owing to a lack of effective targeted therapy and acquired chemoresistance. Here, we explored the function and mechanism of shank-interacting protein-like 1 (SIPL1) in TNBC progression.MethodsSIPL1 expression was examined in human TNBC tissues and cell lines by quantitative reverse transcription PCR, western blot, and immunohistochemistry. SIPL1 overexpression and silenced cell lines were established in BT-549 and MDA-MB-231 cells. The biological functions of SIPL1 in TNBC were studied in vitro using the CCK-8 assay, CellTiter-Glo Luminescent Cell Viability assay, caspase-3/8/9 assay, wound healing assay, and transwell assay and in vivo using a nude mouse model. The potential mechanisms underlying the effects of SIPL1 on TNBC progression were explored using bioinformatics analysis, luciferase reporter assays, and chromatin immunoprecipitation followed by qPCR.ResultsSIPL1 expression was higher in human TNBC tissues and cell lines than in adjacent normal tissues and a breast epithelial cell line (MCF10A). High expression of SIPL1 was positively correlated with poor overall and disease-free survival in patients with TNBC. SIPL1 overexpression elevated and SIPL1 silencing repressed the malignant phenotypes of TNBC cells in vitro. SIPL1 overexpression promoted xenograft tumor growth in vivo. Myc-associated zinc-finger protein (MAZ) transcriptionally activated SIPL1. Finally, we found that SIPL1 promoted TNBC malignant phenotypes via activation of the AKT/NF-κB signaling pathways.ConclusionsThese results indicate that the MAZ/SIPL1/AKT/NF-κB axis plays a crucial role in promoting the malignant phenotypes of TNBC cells.


Author(s):  
Lie Chen ◽  
Xiaofei Miao ◽  
Chenchen Si ◽  
An Qin ◽  
Ye Zhang ◽  
...  

Triple-negative breast cancer (TNBC) has high malignancy and limited treatment, so novel molecular therapeutic targets are urgently needed. Cyclin E1 (CCNE1) promotes progression in breast cancer, but its role and inherent mechanisms in TNBC are yet to be elucidated. Competing endogenous RNA (ceRNA) may be a potential mechanism. CCNE1 was selected though bioinformatics and clinical samples, and cell lines were utilized to verify CCNE1 expression by qRT-PCR and western blot. Predicting tools provided potential miR-195-5p and SENP3-EIF4A1 and tested from multilevel. Functional experiments were conducted in vitro and in vivo. Luciferase reporter assay and RNA immunoprecipitation experiments were implemented to ensure the interaction between miR-195-5p and SENP3-EIF4A1/CCNE1 in TNBC. Bioinformatics found DNA hypermethylation of miR-195-5p and preliminarily verified. Mechanistically, SENP3-EIF4A1-miR-195-5p-associated ceRNA could drive TNBC progress though regulating CCNE1. DNA hypermethylation of miR-195-5p might be another reason. In summary, SENP3-EIF4A1-miR-195-5p-CCNE1 axis promotes TNBC progress and may contribute to the novel diagnosis and treatment of TNBC.


2020 ◽  
Author(s):  
Xiaohui Zhang ◽  
Fangyuan Li ◽  
Yidong Zhou ◽  
Feng Mao ◽  
Yan Lin ◽  
...  

Abstract Background: LncRNAs have been proved to be involved in the proliferation, apoptosis, invasion, migration and other pathological processes of triple negative breast cancer (TNBC). And the expression level of LncRNA AFAP1-AS1 in TNBC was found to be significantly higher than that in other subtypes and normal tissue samples, but the specific mechanism of LncRNA AFAP1-AS1 affecting the occurrence and development of TNBC needs to be revealed.Methods: Cell Counting Kit-8 assays, colony formation assays, wound-healing migration, transwell invasion assays and nude mouse xenograft assays were used to confirm the role of LncRNA AFAP1-AS1 in the proliferation, migration of TNBC cells in vitro and in vivo. Bioinformatics analyses, quantitative polymerase chain reaction (qRT-PCR), western blot, and dual-luciferase assays were performed to confirm the interaction between between LncRNA AFAP1-AS1, miR-2110 and Sp1.Results: In the present study, the silencing of AFAP1-AS1 and Sp1 or the upregulation of miR-2110 would result in the suppression of proliferation, migration and invasion of MDA-MB-231 and MDA-MB-468 cells in vitro as well as tumor growth in vivo. Mechanistically, the dual-luciferase reporter assay highlighted that AFAP1-AS1 functioned as a miR-2110 sponge to increase Sp1 expression. AFAP1-AS1 silencing led to a reduction in Sp1 mRNA and protein levels, which could be reverse by the joint transfection of miR-2110 inhibitor.Conclusions: Our findings demonstrated that AFAP1-AS1 acts as a miR-2110 sponge in TNBC cells, resulting in the regulation of Sp1 expression. And the AFAP1-AS1/miR-2110/Sp1 axis modulated the proliferation, migration and invasion of breast cancer cells and affected the tumorigenesis in mice.


2021 ◽  
Vol 9 (7) ◽  
pp. e002383
Author(s):  
Jin-Li Wei ◽  
Si-Yu Wu ◽  
Yun-Song Yang ◽  
Yi Xiao ◽  
Xi Jin ◽  
...  

PurposeRegulatory T cells (Tregs) heavily infiltrate triple-negative breast cancer (TNBC), and their accumulation is affected by the metabolic reprogramming in cancer cells. In the present study, we sought to identify cancer cell-intrinsic metabolic modulators correlating with Tregs infiltration in TNBC.Experimental designUsing the RNA-sequencing data from our institute (n=360) and the Molecular Taxonomy of Breast Cancer International Consortium TNBC cohort (n=320), we calculated the abundance of Tregs in each sample and evaluated the correlation between gene expression levels and Tregs infiltration. Then, in vivo and in vitro experiments were performed to verify the correlation and explore the underlying mechanism.ResultsWe revealed that GTP cyclohydrolase 1 (GCH1) expression was positively correlated with Tregs infiltration and high GCH1 expression was associated with reduced overall survival in TNBC. In vivo and in vitro experiments showed that GCH1 increased Tregs infiltration, decreased apoptosis, and elevated the programmed cell death-1 (PD-1)-positive fraction. Metabolomics analysis indicated that GCH1 overexpression reprogrammed tryptophan metabolism, resulting in L-5-hydroxytryptophan (5-HTP) accumulation in the cytoplasm accompanied by kynurenine accumulation and tryptophan reduction in the supernatant. Subsequently, aryl hydrocarbon receptor, activated by 5-HTP, bound to the promoter of indoleamine 2,3-dioxygenase 1 (IDO1) and thus enhanced the transcription of IDO1. Furthermore, the inhibition of GCH1 by 2,4-diamino-6-hydroxypyrimidine (DAHP) decreased IDO1 expression, attenuated tumor growth, and enhanced the tumor response to PD-1 blockade immunotherapy.ConclusionsTumor-cell-intrinsic GCH1 induced immunosuppression through metabolic reprogramming and IDO1 upregulation in TNBC. Inhibition of GCH1 by DAHP serves as a potential immunometabolic strategy in TNBC.


Sign in / Sign up

Export Citation Format

Share Document