scholarly journals Preparation and of PVA-based compositions with embedded silver, copper and zinc oxide nanoparticles and assessment of their antibacterial properties

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Jolanta Pulit-Prociak ◽  
Anita Staroń ◽  
Paweł Staroń ◽  
Anna Chmielowiec-Korzeniowska ◽  
Agata Drabik ◽  
...  

Abstract A series of poly(vinyl alcohol) (PVA) based liquid compositions with addition of zinc oxide, silver and copper nanoparticles has been prepared. The compositions also contained other consistency-forming organic components. The physico-chemical properties of the products have been determined. Their pH and density have been assessed. Also, the size of nanoparticles has been defined with using a dynamic light scattering technique. The compositions were subjected to XRD, FT-IR and microscopic analysis as well. Thanks to the incorporation of both metal oxide and metallic nanoparticles, it was possible to enrich the products with antibacterial properties. Their inhibiting properties in the growth of microorganisms have been confirmed against both Gram-negative and Gram-positive strains such as E. coli, S. aureus and P. aeruginosa. Thanks to the ability for solidification, the compositions may be applied on a bacterially contaminated surface, and after destroying the microorganisms and its solidification, it may be peeled off along with the dead bacterial film.

2021 ◽  
Vol 266 ◽  
pp. 124548
Author(s):  
Anielle C.A. Silva ◽  
Marcelo J.B. Silva ◽  
Annelise A. Rocha ◽  
Maria P.C. Costa ◽  
Juliane Z. Marinho ◽  
...  

2018 ◽  
Vol 5 (1) ◽  
pp. 170492
Author(s):  
Binglian Bai ◽  
Zhiming Li ◽  
Haitao Wang ◽  
Min Li ◽  
Yukihiro Ozaki ◽  
...  

Solvent–gelator interactions play a key role in mediating organogel formation and ultimately determine the physico-chemical properties of the organogels and xerogels. The ethanol organogels of 1,4-bis[(3,4,5-trihexyloxy phenyl)hydrazide]phenylene (TC6) were investigated in situ by FT-IR, Raman and fluorescence spectra, and XRD, and it was confirmed that the intermolecular interaction and aggregation structure of TC6 ethanol organogels were quite different from those of xerogels. Simultaneously, unprecedented phase transition from organogel to suspension upon heating was observed in ethanol organogel, and the suspension phase exhibited lytropic liquid crystalline behaviour with a rectangular columnar structure. This study may open the possibility to design new gelators with a new dimension of versatility.


2018 ◽  
Vol 7 (3) ◽  
pp. 217-224 ◽  
Author(s):  
Sarah Ghanbari ◽  
Hamideh Vaghari ◽  
Zahra Sayyar ◽  
Mohammad Adibpour ◽  
Hoda Jafarizadeh-Malmiri

Abstract Silver nanoparticles (AgNPs) were synthesized using Aspergillus fumigatus (A. fumigatus) mycelia extract via the hydrothermal method. The main reducing and stabilizing groups and components of A. fumigatus extract, such as amine, hydroxyl, amid, protein, enzymes, and cell saccharide compounds, were identified by Fourier transform infrared (FT-IR). Central composition design was used to plan the experiments, and response surface methodology was applied to evaluate of the effects of independent variables, including the amount of the prepared extract (5–7 ml) and heating time (10–20 min) at 121°C and 1.5 bar), on the particle size of the synthesized AgNPs, as manifested in broad emission peak (λmax). More stable and spherical monodispersed AgNPs, with mean particle size, polydispersity index (PDI) value, and maximum ζ potential value of 23 nm, 0.270, and +35.3 mV, respectively, were obtained at the optimal synthesis conditions using 7 ml of A. fumigatus extract and heating time of 20 min. The synthesized AgNPs indicated high antibacterial activity against both Gram-positive and Gram-negative bacteria.


Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 72
Author(s):  
Mohamad M. Ahmad ◽  
Hicham Mahfoz Kotb ◽  
Shehla Mushtaq ◽  
Mir Waheed-Ur-Rehman ◽  
Christopher M. Maghanga ◽  
...  

This article outlines the preparation of manganese-doped copper nanoparticles (Mn + Cu NPs) using Vinca rosea (L.) leaf extract as a convenient and environmentally friendly substance. UV–vis, FT–IR, XRD, SEM–EDAX, and DLS instrumental techniques were employed to describe the physical and chemical properties of synthesized V. rosea extract-mediated Vr-Mn + Cu NPs. The synthesized Vr-Mn + Cu NPs were observed to be monodispersed and spherical, with an average size of 412 nm. The plant extract includes a variety of phytochemical components. The Vr-Mn + Cu NPs also have potential antioxidant and antibacterial properties against selected pathogens. The green synthesized Vr-Mn + Cu NPs showed a maximum inhibition zone of 16.33 ± 0.57 mm against E. coli. For dye degradation, MR, EBT, and MO showed the highest degradation percentage capabilities with Vr-Mn + Cu NP-based adsorbents, which were determined to be 78.54 ± 0.16, 87.67 ± 0.06, and 69.79 ± 0.36. The results clearly show that biosynthesized Vr-Mn + Cu NPs may be employed as an antioxidant, antibacterial, photocatalytic dye degradation, and catalytic agent, as well as being ecologically benign.


2020 ◽  
Vol 979 ◽  
pp. 169-174 ◽  
Author(s):  
C. Karthikeyan ◽  
M. Thamima ◽  
S. Karuppuchamy

The nanostructured photocatalysts are the most promising materials for the degradation of toxic dyes. Particularly, CaTiO3 has been used in several applications including catalytic, optical, biological and electronic. In this present study, perovskite structured CaTiO3 nanomaterials have been synthesized by microwave irradiation method. The physico-chemical properties of the prepared CaTiO3 nanomaterials were studied by various advanced characterization techniques. The XRD patterns confirm the presence of perovskite structure of the prepared nanomaterials. FT-IR analysis confirms the presence of Ca-Ti-O vibrational bonds. Micro Raman study display the existence of O-Ca-Ti-O with B1g mode of vibrations. Morphological studies revealed the presence of truncated nanospheres. The dye degradation property of prepared CaTiO3 was investigated by Malachite green (MG) by UV-light.


2020 ◽  
Vol 12 (4) ◽  
pp. 1484 ◽  
Author(s):  
M. Asimuddin ◽  
Mohammed Rafi Shaik ◽  
Neeshat Fathima ◽  
M. Shaistha Afreen ◽  
Syed Farooq Adil ◽  
...  

Due to their low cost and environmentally friendly nature, plant extracts based methods have gained significant popularity among researchers for the synthesis of metallic nanoparticles. Herein, green synthesis of silver nanoparticles was performed using the aqueous solution of Ziziphus mauritiana leaves extract (ZM-LE) as a bio-reducing agent. The as-obtained silver nanoparticles were characterized by using UV-Vis spectroscopy, XRD (X-ray diffraction), TEM (transmission electron microscopy), and FT-IR (Fourier-transform infrared spectroscopy). In addition, the effects of the concentrations of the leaves extract, silver nitrate, and the temperature on the preparation of nanoparticles were also investigated. In order to determine the nature of secondary metabolites present in leaves extract, a preliminary investigation of phytoconstituents was carried out using different methods including Folin-Ciocalteu and AlCl3 methods. The results have indicated the presence of a considerable amount of phenolic and flavonoid contents in the leaves extract, which are believed to be responsible for the reduction of silver ions and stabilization of resulting nanoparticles. Indeed, the FT-IR spectrum of silver nanoparticles also confirmed the presence of residual phytomolecules of leaves extract as stabilizing ligands on the surface of nanoparticles. The antibacterial properties of as-obtained silver nanoparticles were tested against various bacterial strains including Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis. The nanoparticles strongly inhibited the growth of S. aureus with a minimum inhibitory concentration (MIC) of 2.5 μg/ml and moderately inhibited the growth of E. coli with a MIC of 5 μg/ml.


2012 ◽  
Vol 14 (2) ◽  
pp. 88-96
Author(s):  
Bhavna Shah ◽  
Ajay Shah ◽  
Nayan Patel ◽  
Pathik Shah

Synthesis, characterization and analytical applications of chelating resin containing orcinol A chelating resin based on Salicylic acid-Formaldehyde copolymer, containing Orcinol (SFO), has been synthesized and characterized on the basis of Elemental Analysis, Particle Size Distribution, FT-IR Analysis, XRD, SEM and Optical Photographs. The Physico-Chemical properties have been studied. This resin is highly stable in acidic and alkaline solutions and has been studied as a chelating sorbent for heavy metal ions and transition metal ions. The Exchange capacity order is Ni(II) > Cu(II) > Zn(II) > Cd(II) > Pb(II). The effect of nature and concentration of different electrolytes on distribution coefficient (Kd) for metal ions have been investigated. Separation of synthetic mixtures containing Cu(II)-Pb(II), Ni(II)-Cd(II) and Brass constituents has been carried out using a column prepared from the synthesized chelating resin. The developed procedure was also tested for the removal of Cd(II) and Pb(II) from natural water of Purna River near by Navsari, Gujarat, India.


2016 ◽  
Vol 3 (7) ◽  
pp. 2550-2555 ◽  
Author(s):  
Lahoucine Atourki ◽  
El Hassane Ihalane ◽  
Hassan Kirou ◽  
Abdeslam Elfanaoui ◽  
Ahmed Ihlal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document