scholarly journals Prussian blue-based theranostics for ameliorating acute kidney injury

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Dong-Yang Zhang ◽  
Hengke Liu ◽  
Kathy S. Zhu ◽  
Ting He ◽  
Muhammad Rizwan Younis ◽  
...  

Abstract Background Acute kidney injury (AKI) with high mortality rates is associated with an excess of reactive oxygen/nitrogen species (RONS) within kidney tissues. Recently, nanomedicine antioxidant therapy has been used to alleviate AKI. Herein, we synthesized ultrasmall Prussian blue nanozymes (PB NZs, 4.5 nm) as theranostic agents for magnetic resonance (MR)/photoacoustic (PA) dual-modal imaging guided AKI treatment. Results PB NZs exhibited multi-enzyme mimetic abilities, promoting the effective elimination of RONS both in vitro and in vivo. Moreover, benefiting from their imaging contrast properties, the rapid renal accumulation of PB NZs was verified by in vivo PA/MR dual-modal imaging. Due to their excellent enrichment in the kidney and unique multi-enzyme mimetic abilities, ultrasmall PB NZs displayed superior AKI treatment efficacy compared with that of amifostine in two clinically relevant types of AKI induced murine models (either by rhabdomyolysis or cisplatin). Conclusion Our findings suggested ultrasmall PB NZs, as nanozyme theranostics, have great potential for AKI management. Graphic abstract

2017 ◽  
Vol 43 (5) ◽  
pp. 2143-2154 ◽  
Author(s):  
Xiaoling Chen ◽  
Jian Sun ◽  
Hailun Li ◽  
Hongwu Wang ◽  
Yongtao Lin ◽  
...  

Background/Aims: Rhabdomyolysis (RM) is a potentially life-threatening condition that results from the breakdown of muscle and consequent release of toxic compounds into circulation. The most common and severe complication of RM is acute kidney injury (AKI). This study aimed to evaluate the efficacy and mechanisms of action of curcumin-loaded nanoparticles (Cur-NP) for treatment of RM-induced AKI. Methods: Curcumin-NP was synthesized using the nanocarrier distearoylphosphatidylethanolamine-polyethylene glycol (DSPE-PEG) to achieve a prolonged and constant drug release profile compared with the curcumin-free group. The anti-AKI effects of Curcumin-NP were examined both in vitro (myoglobin-treated renal tubular epithelial HK-2 cells) and in vivo (glycerol-induced AKI model). Results: Our results indicated that Curcumin-NP reversed oxidative stress, growth inhibition and cell apoptosis accompanied with down-regulation of apoptotic markers Caspase-3 and GRP-78 in vitro. In vivo studies revealed enhanced AKI treatment efficacy with Curcumin-NP as characterized by reduced serum creatine phosphokinase (CPK), creatinine (Cr) and urea and less severe histological damage in renal tubules. In addition, kidney tissues from Curcumin-NP-treated AKI rats exhibited reduced oxidative stress, apoptosis, and cleaved Capase-3 and GRP-78 expression. Conclusion: Our results suggest that nanoparticle-loaded curcumin enhances treatment efficacy for RM-induced AKI both in vitro and in vivo.


Toxins ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 521
Author(s):  
Janeyuth Chaisakul ◽  
Orawan Khow ◽  
Kulachet Wiwatwarayos ◽  
Muhamad Rusdi Ahmad Rusmili ◽  
Watcharamon Prasert ◽  
...  

Acute kidney injury (AKI) following Eastern Russell’s viper (Daboia siamensis) envenoming is a significant symptom in systemically envenomed victims. A number of venom components have been identified as causing the nephrotoxicity which leads to AKI. However, the precise mechanism of nephrotoxicity caused by these toxins is still unclear. In the present study, we purified two proteins from D. siamensis venom, namely RvPLA2 and RvMP. Protein identification using LCMS/MS confirmed the identity of RvPLA2 to be snake venom phospholipase A2 (SVPLA2) from Thai D. siamensis venom, whereas RvMP exhibited the presence of a factor X activator with two subunits. In vitro and in vivo pharmacological studies demonstrated myotoxicity and histopathological changes of kidney, heart, and spleen. RvPLA2 (3–10 µg/mL) caused inhibition of direct twitches of the chick biventer cervicis muscle preparation. After administration of RvPLA2 or RvMP (300 µg/kg, i.p.) for 24 h, diffuse glomerular congestion and tubular injury with minor loss of brush border were detected in envenomed mice. RvPLA2 and RvMP (300 µg/kg; i.p.) also induced congestion and tissue inflammation of heart muscle as well as diffuse congestion of mouse spleen. This study showed the significant roles of PLA2 and SVMP in snake bite envenoming caused by Thai D. siamensis and their similarities with observed clinical manifestations in envenomed victims. This study also indicated that there is a need to reevaluate the current treatment strategies for Thai D. siamensis envenoming, given the potential for irreversible nephrotoxicity.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Ruizhao Li ◽  
Xingchen Zhao ◽  
Shu Zhang ◽  
Wei Dong ◽  
Li Zhang ◽  
...  

AbstractAutophagy is an important renal-protective mechanism in septic acute kidney injury (AKI). Receptor interacting protein kinase 3 (RIP3) has been implicated in the renal tubular injury and renal dysfunction during septic AKI. Here we investigated the role and mechanism of RIP3 on autophagy in septic AKI. We showed an activation of RIP3, accompanied by an accumulation of the autophagosome marker LC3II and the autophagic substrate p62, in the kidneys of lipopolysaccharide (LPS)-induced septic AKI mice and LPS-treated cultured renal proximal tubular epithelial cells (PTECs). The lysosome inhibitor did not further increase the levels of LCII or p62 in LPS-treated PTECs. Moreover, inhibition of RIP3 attenuated the aberrant accumulation of LC3II and p62 under LPS treatment in vivo and in vitro. By utilizing mCherry-GFP-LC3 autophagy reporter mice in vivo and PTECs overexpression mRFP-GFP-LC3 in vitro, we observed that inhibition of RIP3 restored the formation of autolysosomes and eliminated the accumulated autophagosomes under LPS treatment. These results indicated that RIP3 impaired autophagic degradation, contributing to the accumulation of autophagosomes. Mechanistically, the nuclear translocation of transcription factor EB (TFEB), a master regulator of the lysosome and autophagy pathway, was inhibited in LPS-induced mice and LPS-treated PTECs. Inhibition of RIP3 restored the nuclear translocation of TFEB in vivo and in vitro. Co-immunoprecipitation further showed an interaction of RIP3 and TFEB in LPS-treated PTECs. Also, the expression of LAMP1 and cathepsin B, two potential target genes of TFEB involved in lysosome function, were decreased under LPS treatment in vivo and in vitro, and this decrease was rescued by inhibiting RIP3. Finally, overexpression of TFEB restored the autophagic degradation in LPS-treated PTECs. Together, the present study has identified a pivotal role of RIP3 in suppressing autophagic degradation through impeding the TFEB-lysosome pathway in septic AKI, providing potential therapeutic targets for the prevention and treatment of septic AKI.


2012 ◽  
Vol 303 (10) ◽  
pp. F1443-F1453 ◽  
Author(s):  
Chung-Hsi Hsing ◽  
Chiou-Feng Lin ◽  
Edmund So ◽  
Ding-Ping Sun ◽  
Tai-Chi Chen ◽  
...  

Bone morphogenetic protein (BMP)-7 protects sepsis-induced acute kidney injury (AKI). Dexmedetomidine (DEX), an α2-adrenoceptor (α2-AR) agonist, has anti-inflammatory effects. We investigated the protective effects of DEX on sepsis-induced AKI and the expression of BMP-7 and histone deacetylases (HDACs). In vitro , the effects of DEX or trichostatin A (TSA, an HDAC inhibitor) on TNF-α, monocyte chemotactic protein (MCP-1), BMP-7, and HDAC mRNA expression in LPS-stimulated rat renal tubular epithelial NRK52E cells, was determined using real-time PCR. In vivo, mice were intraperitoneally injected with DEX (25 μg/kg) or saline immediately and 12 h after cecal ligation and puncture (CLP) surgery. Twenty-four hours after CLP, we examined kidney injury and renal TNF-α, MCP-1, BMP-7, and HDAC expression. Survival was monitored for 120 h. LPS increased HDAC2, HDAC5, TNF-α, and MCP-1 expression, but decreased BMP-7 expression in NRK52E cells. DEX treatment decreased the HDAC2, HDAC5, TNF-α, and MCP-1 expression, but increased BMP-7 and acetyl histone H3 expression, whose effects were blocked by yohimbine, an α2-AR antagonist. With DEX treatment, the LPS-induced TNF-α expression and cell death were attenuated in scRNAi-NRK52E but not BMP-7 RNAi-NRK52E cells. In CLP mice, DEX treatment increased survival and attenuated AKI. The expression of HDAC2, HDAC5, TNF-α, and MCP-1 mRNA in the kidneys of CLP mice was increased, but BMP-7 was decreased. However, DEX treatment reduced those changes. DEX reduces sepsis-induced AKI by decreasing TNF-α and MCP-1 and increasing BMP-7, which is associated with decreasing HDAC2 and HDAC5, as well as increasing acetyl histone H3.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Xudong Wang ◽  
Yali Wang ◽  
Mingjian Kong ◽  
Jianping Yang

Abstract Background: Septic acute kidney injury is considered as a severe and frequent complication that occurs during sepsis. The present study was performed to understand the role of miR-22-3p and its underlying mechanism in sepsis-induced acute kidney injury. Methods: Rats were injected with adenovirus carrying miR-22-3p or miR-NC in the caudal vein before cecal ligation. Meanwhile, HK-2 cells were transfected with the above adenovirus following LPS stimulation. We measured the markers of renal injury (blood urea nitrogen (BUN), serum creatinine (SCR)). Histological changes in kidney tissues were examined by hematoxylin and eosin (H&E), Masson staining, periodic acid Schiff staining and TUNEL staining. The levels of IL-1β, IL-6, TNF-α and NO were determined by ELISA assay. Using TargetScan prediction and luciferase reporter assay, we predicted and validated the association between PTEN and miR-22-3p. Results: Our data showed that miR-22-3p was significantly down-regulated in a rat model of sepsis-induced acute kidney injury, in vivo and LPS-induced sepsis model in HK-2 cells, in vitro. Overexpression of miR-22-3p remarkably suppressed the inflammatory response and apoptosis via down-regulating HMGB1, p-p65, TLR4 and pro-inflammatory factors (IL-1β, IL-6, TNF-α and NO), both in vivo and in vitro. Moreover, PTEN was identified as a target of miR-22-3p. Furthermore, PTEN knockdown augmented, while overexpression reversed the suppressive role of miR-22-3p in LPS-induced inflammatory response. Conclusions: Our results showed that miR-22-3p induced protective role in sepsis-induced acute kidney injury may rely on the repression of PTEN.


2020 ◽  
Vol 31 (2) ◽  
pp. 210-220
Author(s):  
Dan Luo ◽  
Xinhao Liu ◽  
Jie Zhang ◽  
Lei Du ◽  
Lin Bai ◽  
...  

Abstract OBJECTIVES Progenitor cells mobilized by granulocyte colony-stimulating factor (G-CSF) have been shown to lessen acute kidney injury induced by extracorporeal circulation (ECC). Both acute kidney injury and lung injury are characterized by endothelial dysfunction. Our goal was to examine whether and how G-CSF-mobilized progenitors with endothelial capacity may help mitigate ECC-induced pulmonary dysfunction. METHODS G-CSF (10 μg/kg/day) was administered subcutaneously to C57BL/6 mice before or at the initiation of the ECC process, after which lung injury was assessed by measuring neutrophils in the fluid from bronchoalveolar lavage and determining the pathological score in lung tissue. CD133+ progenitors were isolated and injected into C57BL/6 mice before ECC in vivo. We incubated the CD133+ cells with pulmonary monocytes or neutrophils isolated from naïve mice in vitro. RESULTS Pretreatment with G-CSF for 2 days significantly decreased the number of neutrophils in the bronchoalveolar lavage fluid, and the pathological score (P < 0.01; n = 5) improved the PaO2/FiO2 ratio [193.4 ± 12.7 (ECC without G-CSF) vs 305.6 ± 22.6 mmHg (ECC with G-CSF); P = 0.03, n = 5] and suppressed neutrophil elastase and tumour necrosis factor-α levels in the circulation; we also observed increases in both circulating and pulmonary populations of CD133+ progenitors. Similar effects were observed in animals pretreated with CD133+ progenitors instead of G-CSF before ECC. The majority of CD133+/CD45− and CD133+/CD45+ progenitors were mobilized in the lung and in the circulation, respectively. Incubating CD133+ progenitors with neutrophils or pulmonary monocytes blocked lipopolysaccharide-induced release of inflammatory factors. CONCLUSIONS Our results suggest that pretreatment of G-CSF attenuates ECC-induced pulmonary dysfunction through inhibiting the inflammatory response in lung tissue and in the circulation with associated premobilization of CD133+ progenitors.


2019 ◽  
Vol 10 (11) ◽  
pp. 7142-7151
Author(s):  
Wenwen Zhao ◽  
Xi Zeng ◽  
Fancheng Meng ◽  
Xiaolin Bi ◽  
Dahai Xu ◽  
...  

We report here an acidic polysaccharide, namely RSP-3, which ameliorates acute kidney injury and is obtained from Sanguisorba officinalis.


2011 ◽  
Vol 5 (5) ◽  
pp. e1182 ◽  
Author(s):  
Rui V. Lucato ◽  
Regina C. R. M. Abdulkader ◽  
Katia C. Barbaro ◽  
Glória E. Mendes ◽  
Isac Castro ◽  
...  

2017 ◽  
Vol 114 (47) ◽  
pp. 12608-12613 ◽  
Author(s):  
Bing-Qing Deng ◽  
Ying Luo ◽  
Xin Kang ◽  
Chang-Bin Li ◽  
Christophe Morisseau ◽  
...  

Acute kidney injury (AKI) causes severe morbidity and mortality for which new therapeutic strategies are needed. Docosahexaenoic acid (DHA), arachidonic acid (ARA), and their metabolites have various effects in kidney injury, but their molecular mechanisms are largely unknown. Here, we report that 14 (15)-epoxyeicosatrienoic acid [14 (15)-EET] and 19 (20)-epoxydocosapentaenoic acid [19 (20)-EDP], the major epoxide metabolites of ARA and DHA, respectively, have contradictory effects on kidney injury in a murine model of ischemia/reperfusion (I/R)-caused AKI. Specifically, 14 (15)-EET mitigated while 19 (20)-EDP exacerbated I/R kidney injury. Manipulation of the endogenous 19 (20)-EDP or 14 (15)-EET by alteration of their degradation or biosynthesis with selective inhibitors resulted in anticipated effects. These observations are supported by renal histological analysis, plasma levels of creatinine and urea nitrogen, and renal NGAL. The 14 (15)-EET significantly reversed the I/R-caused reduction in glycogen synthase kinase 3β (GSK3β) phosphorylation in murine kidney, dose-dependently inhibited the hypoxia/reoxygenation (H/R)-caused apoptosis of murine renal tubular epithelial cells (mRTECs), and reversed the H/R-caused reduction in GSK3β phosphorylation in mRTECs. In contrast, 19 (20)-EDP dose-dependently promoted H/R-caused apoptosis and worsened the reduction in GSK3β phosphorylation in mRTECs. In addition, 19 (20)-EDP was more metabolically stable than 14 (15)-EET in vivo and in vitro. Overall, these epoxide metabolites of ARA and DHA function conversely in I/R-AKI, possibly through their largely different metabolic stability and their opposite effects in modulation of H/R-caused RTEC apoptosis and GSK3β phosphorylation. This study provides AKI patients with promising therapeutic strategies and clinical cautions.


Sign in / Sign up

Export Citation Format

Share Document