scholarly journals A polydopamine nanomedicine used in photothermal therapy for liver cancer knocks down the anti-cancer target NEDD8-E3 ligase ROC1 (RBX1)

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhanxia Zhang ◽  
Junqian Zhang ◽  
Jianhui Tian ◽  
Hegen Li

AbstractKnocking down the oncogene ROC1 with siRNA inhibits the proliferation of cancer cells by suppressing the Neddylation pathway. However, methods for delivering siRNA in vivo to induce this high anticancer activity with low potential side effects are urgently needed. Herein, a folic acid (FA)-modified polydopamine (PDA) nanomedicine used in photothermal therapy was designed for siRNA delivery. The designed nanovector can undergo photothermal conversion with good biocompatibility. Importantly, this genetic nanomedicine was selectively delivered to liver cancer cells by FA through receptor-mediated endocytosis. Subsequently, the siRNA cargo was released from the PDA nanomedicine into the tumor microenvironment by controlled release triggered by pH. More importantly, the genetic nanomedicine not only inhibited liver cancer cell proliferation but also promoted liver cell apoptosis by slowing ROC1 activity, suppressing the Neddylation pathway, enabling the accumulation of apototic factor ATF4 and DNA damage factor P-H2AX. Combined with photothermal therapy, this genetic nanomedicine showed superior inhibition of the growth of liver cancer in vitro and in vivo. Taken together, the results indicate that this biodegradable nanomedicine exhibits good target recognition, an effective pH response, application potential for genetic therapy, photothermal imaging and treatment of liver cancer. Therefore, this work contributes to the design of a multifunctional nanoplatform that combines genetic therapy and photothermal therapy for the treatment of liver cancer.

2014 ◽  
Vol 20 (5) ◽  
pp. 1274-1287 ◽  
Author(s):  
Chun-Han Chen ◽  
Mei-Chuan Chen ◽  
Jing-Chi Wang ◽  
An-Chi Tsai ◽  
Ching-Shih Chen ◽  
...  

Nanoscale ◽  
2020 ◽  
Vol 12 (20) ◽  
pp. 10939-10943 ◽  
Author(s):  
Deyao Zhao ◽  
Ge Yang ◽  
Qing Liu ◽  
Wenjing Liu ◽  
Yuhua Weng ◽  
...  

Spatiotemporal controllable siRNA delivery and gene modulation by light-triggerable aptamer nanoswitcher was reported in this study, which achieved on-demand siRNA internalization by cancer cells at desired site and time in vitro and in vivo.


Nanoscale ◽  
2018 ◽  
Vol 10 (5) ◽  
pp. 2512-2523 ◽  
Author(s):  
Eun Bi Kang ◽  
Jung Eun Lee ◽  
Zihnil Adha Islamy Mazrad ◽  
Insik In ◽  
Ji Hoon Jeong ◽  
...  

Here we designed the functionalized FNP as “switch-on” fluorescence probes to sense intracellular cancer cells and controllable photothermal therapy (PTT) in vivo and in vitro.


2006 ◽  
Vol 26 (8) ◽  
pp. 964-975 ◽  
Author(s):  
Hirohisa Yano ◽  
Sachiko Ogasawara ◽  
Seiya Momosaki ◽  
Jun Akiba ◽  
Sakiko Kojiro ◽  
...  

2012 ◽  
Vol 324 (1) ◽  
pp. 66-74 ◽  
Author(s):  
Evandro Fei Fang ◽  
Chris Zhi Yi Zhang ◽  
Jack Ho Wong ◽  
Jia Yun Shen ◽  
Chuan Hao Li ◽  
...  

2013 ◽  
Vol 36 (3) ◽  
pp. 247-257 ◽  
Author(s):  
Mengde Cao ◽  
Victor Prima ◽  
David Nelson ◽  
Stanislav Svetlov

2017 ◽  
Vol 474 (20) ◽  
pp. 3391-3402 ◽  
Author(s):  
Jiro Ogura ◽  
Seiji Miyauchi ◽  
Kazumi Shimono ◽  
Shengping Yang ◽  
Sathisha Gonchigar ◽  
...  

Carbidopa is used with l-DOPA (l-3,4-dihydroxyphenylalanine) to treat Parkinson's disease (PD). PD patients exhibit lower incidence of most cancers including pancreatic cancer, but with the notable exception of melanoma. The decreased cancer incidence is not due to l-DOPA; however, the relevance of Carbidopa to this phenomenon has not been investigated. Here, we tested the hypothesis that Carbidopa, independent of l-DOPA, might elicit an anticancer effect. Carbidopa inhibited pancreatic cancer cell proliferation both in vitro and in vivo. Based on structural similarity with phenylhydrazine, an inhibitor of indoleamine-2,3-dioxygenase-1 (IDO1), we predicted that Carbidopa might also inhibit IDO1, thus providing a molecular basis for its anticancer effect. The inhibitory effect was confirmed using human recombinant IDO1. To demonstrate the inhibition in intact cells, AhR (aryl hydrocarbon receptor) activity was monitored as readout for IDO1-mediated generation of the endogenous AhR agonist kynurenine in pancreatic and liver cancer cells. Surprisingly, Carbidopa did not inhibit but instead potentiated AhR signaling, evident from increased CYP1A1 (cytochrome P450 family 1 subfamily A member 1), CYP1A2, and CYP1B1 expression. In pancreatic and liver cancer cells, Carbidopa promoted AhR nuclear localization. AhR antagonists blocked Carbidopa-dependent activation of AhR signaling. The inhibitory effect on pancreatic cancer cells in vitro and in vivo and the activation of AhR occurred at therapeutic concentrations of Carbidopa. Chromatin immunoprecipitation assay further confirmed that Carbidopa promoted AhR binding to its target gene CYP1A1 leading to its induction. We conclude that Carbidopa is an AhR agonist and suppresses pancreatic cancer. Hence, Carbidopa could potentially be re-purposed to treat pancreatic cancer and possibly other cancers as well.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jingjing Wan ◽  
Juan Zhou ◽  
Lu Fu ◽  
Yubin Li ◽  
Huawu Zeng ◽  
...  

Experimental and clinical evidence has indicated that the natural product ascorbic acid (AA) is effective in preventing and treating various types of cancers. However, the effect of AA on liver cancer metastasis has not yet been reported. Cancer stem cells (CSCs) play pivotal roles in cancer metastasis. Here, we demonstrated that AA selectively inhibited the viability of both liver cancer cells and CSCs, reduced the formation of cancer cell colonies and CSC spheres, and inhibited tumor growth in vivo. Additionally, AA prevented liver cancer metastasis in a xenotransplantation model without suppressing stemness gene expression in liver CSCs. Further study indicated that AA increased the concentration of H2O2 and induced apoptosis in liver CSCs. Catalase attenuated the inhibitory effects of AA on liver CSC viability. In conclusion, AA inhibited the viability of liver CSCs and the growth and metastasis of liver cancer cells in vitro and in vivo by increasing the production of H2O2 and inducing apoptosis. Our findings provide evidence that AA exerts its anti-liver cancer efficacy in vitro and in vivo, in a manner that is independent of stemness gene regulation.


2019 ◽  
Author(s):  
Ni Tan ◽  
Bo Zhu ◽  
Hong Shu ◽  
Yi‑Feng Tao ◽  
Jun‑Rong Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document