scholarly journals Effects of coenzyme Q10 on ovarian surface epithelium-derived ovarian stem cells and ovarian function in a 4-vinylcyclohexene diepoxide-induced murine model of ovarian failure

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hyun Joo Lee ◽  
Min Jung Park ◽  
Bo Sun Joo ◽  
Jong Kil Joo ◽  
Yeon Hee Kim ◽  
...  

Abstract Background Several studies have shown that coenzyme Q10 (CoQ10) can rescue ovarian aging and that ovarian surface epithelium (OSE)-derived ovarian stem cells (OSCs) are useful for treating infertility due to ovarian aging. However, few studies have examined the effect of CoQ10 on OSCs. This study was aimed to investigate whether CoQ10 activates OSCs and recovers ovarian function in a 4-vinylcyclohexene diepoxide (VCD)-induced mouse model of ovarian failure. Methods Forty female C57BL/6 mice aged 6 weeks were randomly divided into four groups (n = 10/group): a control group administered saline orally, a CoQ10 group administered 150 mg/kg/day of CoQ10 orally in 1 mL of saline daily for 14 days, a VCD group administered 160 mg/kg/day of VCD i.p. in 2.5 mL of saline/kg for 5 days, and a VCD + CoQ10 group administered VCD i.p. for 5 days injection and CoQ10 (150 mg/kg/day) orally for 14 days. After treatment, follicle counts were evaluated by hematoxylin and eosin (H&E) staining, and ovarian mRNA expressions of Bmp-15, Gdf-9, and c-Kit were examined by quantitative real-time PCR. Serum FSH, AMH, and ROS levels were also measured. Oocyte-like structure counts and the expressions of Oct-4 and MVH were also evaluated after culturing OSE for 3 weeks. In a second experiment, 32 female mice were administered CoQ10 as described above, induced to superovulate using PMSG and hCG, and mated. Numbers of zygotes and embryo development rate were examined. Results Postcultured OSE showed significant increases in the numbers of oocyte-like structure and that the expression of Oct-4 and MVH were higher in the VCD + CoQ10 group than in the VCD group (p < 0.05). Numbers of surviving follicles from primordial to antral follicles, numbers of zygotes retrieved and embryo development rate to blastocyst were significantly greater in the VCD + CoQ10 group than in the VCD group (p < 0.01). Serum AMH level and ovarian expressions of Bmp-15, Gdf-9 and c-Kit were also significantly greater in the VCD + CoQ10 group than in the VCD group (p < 0.05). In contrast, serum ROS level was significantly lower in the VCD + CoQ10 group than in the VCD group (p < 0.05). Conclusion This study shows that CoQ10 stimulates the differentiation of OSE-derived OSCs and confirms that CoQ10 can reduce ROS levels and improve ovarian function and oocyte quality in mice with VCD-induced ovarian failure.

2021 ◽  
Author(s):  
Hyun Joo Lee ◽  
Min Jung Park ◽  
Bo Sun Joo ◽  
Jong Kil Joo ◽  
Yeon Hee Kim ◽  
...  

Abstract Background: Several studies have shown that CoQ10 can rescue ovarian aging and that ovarian surface epithelium (OSE)-derived ovarian stem cells (OSCs) are useful for treating infertility with ovarian aging. However, there are few studies the effect of CoQ10 on OSCs. This study was aimed to investigate whether CoQ10 activates OSCs while recovering ovarian function using 4-vinylcyclohexene diepoxide (VCD)-induced ovarian failure mouse model.Methods: C57BL/6 female mice aged 6 weeks were randomly divided into four groups (n=10/group): (Control) saline and orally, (CoQ10) 150 mg/kg/day orally in 1 mL of saline daily for 14 days, (VCD) 160 mg/kg/day, 2.5 ml/kg ip for 5 days, (VCD+CoQ10) 5 days after VCD injection, CoQ10 (150 mg/kg/day) orally for 14 days. After final treatment of CoQ10, follicle counts were evaluated by hematoxylin and eosin (H&E) staining, and ovarian mRNA expressions of Bmp-15, Gdf-9, and c-Kit were examined by quantitative real-time PCR. Serum FSH, AMH, and ROS levels were also measured. Oocyte-like structure count and expression of Oct-4 and MVH were evaluated from postcultured OSE for 3 weeks. In the second experiment, another 32 female mice were administered with CoQ10 in the same way as above and were superovulated by PMSG and hCG, followed by mated with males. Then, numbers of zygotes ovulated and embryo development rate were examined. Results: Postcultured OSE had significantly increased numbers of oocyte-like structure and expression of Oct-4 and MVH in VCD+CoQ10 group compared to VCD group (p <0.05). Numbers of surviving follicles including from primordial to antral follicles, numbers of zygotes retrieved and embryo development rate to blastocyst were significantly higher in VCD+CoQ10 group compared to VCD group (p <0.01). Serum AMH level and ovarian expression of Bmp-15, Gdf-9, and c-Kit were significantly increased in VCD+CoQ10 group compared to VCD group (p <0.05). In contrast, serum ROS level was significantly decreased in VCD+CoQ10 group compared to VCD group (p <0.05). Conclusion(s): This is the first study to show that CoQ10 stimulates the differentiation of OSE-derived OSCs. Also this study confirms that CoQ10 can reduce ROS levels, leading to improve ovarian function and oocyte quality in ovarian failure mice.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Irma Virant-Klun ◽  
Thomas Skutella ◽  
Mikael Kubista ◽  
Andrej Vogler ◽  
Jasna Sinkovec ◽  
...  

The aim of this study was to trigger the expression of genes related to oocytes in putative ovarian stem cells scraped from the ovarian surface epithelium of women with premature ovarian failure and culturedin vitroin the presence of follicular fluid, rich in substances for oocyte growth and maturation. Ovarian surface epithelium was scraped and cell cultures were set up by scrapings in five women with nonfunctional ovaries and with no naturally present mature follicles or oocytes. In the presence of donated follicular fluid putative stem cells grew and developed into primitive oocyte-like cells. A detailed single-cell gene expression profiling was performed to elucidate their genetic status in comparison to human embryonic stem cells, oocytes, and somatic fibroblasts. The ovarian cell cultures depleted/converted reproductive hormones from the culture medium. Estradiol alone or together with other substances may be involved in development of these primitive oocyte-like cells. The majority of primitive oocyte-like cells was mononuclear and expressed several genes related to pluripotency and oocytes, including genes related to meiosis, although they did not express some important oocyte-specific genes. Our work reveals the presence of putative stem cells in the ovarian surface epithelium of women with premature ovarian failure.


2020 ◽  
Author(s):  
Yaoqi Huang ◽  
Haifeng Ye ◽  
Feiyin Zhu ◽  
Chuan Hu ◽  
Yuehui Zheng

Abstract In recent years, the discovery of ovarian germ stem cells (OGSCs) has provided a new research direction for the treatment of ovarian failure. The ovarian microenvironment affects the proliferation and differentiation of OGSCs, and immune cells and related cytokines are important components of the microenvironment. However, whether improving the ovarian microenvironment can regulate the proliferation of OGSCs and remodel ovarian function has not been reported. In this study, we linked chitosan oligosaccharide(COS) with fluorescein isothiocyanate (FITC) to select the best route of administration. COS was given to mice through the best route of administration, and the changes in ovarian and immune function were observed using assays of organ index, follicular growth, serum estrogen (E 2 ) and anti-Mullerian hormone (AMH) levels, and the expression of IL-2 and TNF-α in the ovaries. COS significantly increased the weight of the ovary and immune organs, reduced the rate of follicular atresia, increased the levels of E 2 and AMH hormones, and increased the protein expression of IL-2 and TNF-α in the ovary. Then, COS and OGSCs were cocultured to observe the entry of COS into OGSCs and to measure the survival rate of OGSCs. With increasing time, COS gradually entered the cell, and the cytokines IL-2 and TNF-α significantly promoted OGSCs promotion. In conclusion, COS significantly improved the ovarian and immune function of mice with pathological ovarian aging, and improved the survival rate of OGSCs, which provided a preliminary blueprint for further exploring the mechanism of COS in anti ovarian aging.


Zygote ◽  
2013 ◽  
Vol 23 (3) ◽  
pp. 315-326 ◽  
Author(s):  
Yashar Esmaeilian ◽  
Arzu Atalay ◽  
Esra Erdemli

SummaryFor decades, scientists have considered that female mammals are born with a lifetime reserve of oocytes in the ovary, irrevocably fated to decline after birth. However, controversy in the matter of the possible presence of oocytes and granulosa cells that originate from stem cells in the adult mammalian ovaries has been expanded. The restricted supply of oocytes in adult female mammals has been disputed in recent years by supporters of neo-oogenesis, who claim that germline stem cells (GSCs) exist in the ovarian surface epithelium (OSE) or the bone marrow (BM). Differentiation of ovarian stem cells (OSCs) into oocytes, fibroblast-like cells, granulosa phenotype, neural and mesenchymal type cells and generation of germ cells from OSCs under the contribution of an OSC niche that consists of immune system-related cells and hormonal signalling has been claimed. Although these arguments have met with intense suspicion, their confirmation would necessitate the revision of the current classic knowledge of female reproductive biology.


Author(s):  
Ajeet Kumar Jha ◽  
Anirban Mandal ◽  
Kalyani Ray ◽  
Shyamal Kanti Guha

Background: Few studies have confirmed the presence of ovarian tissue stem cells indicating the capacity for differentiation. Based on this fact, it was hypothesized that mesenchymal stem cells (MSC) were found in ovarian surface epithelium (OSE) of canines that could easily be isolated. Methods: Both left and right ovaries were minced and digested using collagenase to obtain a stromal vascular fraction (SVF). MSCs were characterized using RT-PCR. To ascertain the trilineage differentiation potential, MSCs were stained with respective stain for osteocytes, chondrocytes and adipocytes. Result: We observed elongated, spindle-shaped and fibroblast like appearance of cells after 72 h of initial culture. Expression of MSC specific surface markers were observed through RT-PCR. Using Stem Pro® differentiation medium, OSE were differentiated into osteogenic, chondrogenic and adipogenic lineages and were found to be potential source for isolation, characterization and differentiation of MSCs. Canine (OSE) is easily accessible, multipotent and has high plasticity, holding promise for applications in regenerative medicine.


2020 ◽  
Vol 245 (8) ◽  
pp. 711-719
Author(s):  
Min Jung Park ◽  
Jun-Woo Ahn ◽  
Ki Hyung Kim ◽  
Junghee Bang ◽  
Seung Chul Kim ◽  
...  

This study investigated ovarian expressions of bone morphogenetic protein 15 (BMP15), growth differentiation factor 9 (GDF9), and C-KIT according to age in female mice to determine whether these factors can be served as new potential biomarkers of ovarian aging. Ovaries were collected from mice aged 10, 20, 30, and 40 weeks, and ovarian expressions of BMP15, GDF9, and C-KIT were examined by real-time PCR, Western blot, and immunohistochemistry. Follicle counts were measured on histological hematoxylin and eosin staining. In the second experiment to evaluate ovarian function, after superovulation with PMSG and hCG, the numbers of zygotes retrieved and embryo development rate were examined. Ovarian expressions of BMP15, GDF9, and C-KIT decreased with age. Follicle counts, numbers of retrieved zygotes, and embryo development rate were also significantly reduced in old mice over 30 weeks compared with young mice. These results indicate that these factors could be served as new potential biomarkers of ovarian aging. Impact statement Ovarian aging is becoming a more important issue in terms of fertility preservation and infertility treatment. Serum anti-Mullerian hormone (AMH) level and antral follicle count (AFC) are being practically used as markers of ovarian aging as well as ovarian reserve in human. However, these factors have some drawbacks in assessing ovarian aging and reserve. Therefore, the identification of ovarian expressions of BMP15, GDF9, and C-KIT according to female could be applied as a potent predictor of ovarian aging. This work provides new information on the development of diagnosis and treatment strategy of age-related fertility decline and premature ovarian insufficiency.


2015 ◽  
Vol 37 (6) ◽  
pp. 2311-2322 ◽  
Author(s):  
Zezheng Pan ◽  
Mengli Sun ◽  
Jia Li ◽  
Fangyue Zhou ◽  
Xia Liang ◽  
...  

Background/Aims: Ovarian germline stem cells (OGSCs) have been shown to mainly exist in the ovarian surface epithelium (OSE), but the activity changes of germline stem cells during different reproductive stages and the potential regulatory signaling pathway are still unknown. The Notch signaling pathway plays a key role in cell development, primordial follicles and stem cell proliferation. However, whether it plays a role in the proliferation of OGSCs is unknown. Here, we analyzed the activity changes of germline stem cells and the correlation between germline stem cells and the Notch signaling pathway. Methods: The expression of germline stem cell markers Mvh, Ooc4 and the Notch molecules Notch1, Hes1, and Hes5 were detected during 3 days (3d), and 2, 12, 20 months (2m, 12m, 20m) mouse ovarian surface epithelium samples. DAPT, a specific inhibitor of the Notch pathway, was used to observe the influence of Notch signaling in the germline stem cells. Results: The results showed that the levels of MVH and OCT4 decreased substantially with reproductive age in ovarian surface epithelium, and the same tendency was detected in the Notch signaling molecules Notch1, Hes1 and Hes5. Dual-IF results showed that the germline stem cell markers were co-expressed with Notch molecules in the ovarian surface epithelium. While, the expression of MVH and OCT4 were reduced when the ovaries were treated with DAPT and the levels were attenuated with increasing dose of DAPT. Conclusion: Taken together, our results indicate that the viability of OGSCs decreased with the age of the mouse ovaries, and the activity of OGSCs in the ovarian surface epithelium may be related to the Notch signaling pathway.


2021 ◽  
Author(s):  
Xiaodan Lv ◽  
Chunyi Guan ◽  
Ying Li ◽  
Xing Su ◽  
lu Zhang ◽  
...  

Abstract BackgroundAt present, there is no effective treatment for premature ovarian failure (POF), and stem cell therapy is considered the most promising treatment. Human umbilical cord blood mesenchymal stem cells (hUC-MSCs) have shown good regenerative ability in a variety of diseases including POI, but the method and dosage of hUC-MSCs to treat POI are not clear. This study aims to explore the treatment options of hUC-MSCs for POF by comparing single injection and multiple injections of hUC-MSCs on the ovarian function repair of POF caused by chemotherapy drugs.MethodsFemale mice were injected intraperitoneally with 30 mg/kg of busulfan and 120 mg/kg of cyclophosphamide to induce POF. In the single hUC-MSCs injection group, 7 days after the mice were injected with cyclophosphamide and busulfan, hUC-MSCs were transplanted into these mice. In the multiple injection group, hUC-MSCs were transplanted 7 days, 14 days and 21 days after the mice were injected with cyclophosphamide and busulfan. We evaluated ovarian morphology, fertility, follicle stimulating hormone and estradiol concentration, and follicle count, evaluated POF model and cell transplantation. In addition, real-time PCR, immunohistochemistry, miRNA chip and mRNA chip are used to evaluate the effect of cell therapy.ResultsCompared with the POF group, the ovarian size and primordial follicle count in the hUC-MSC group were significantly improved, and the fertility was also significantly improved. Immunohistochemistry showed that compared with the POF group, the anti-Mullerian hormone and Ki-67 in the ovary of the hUC-MSC group increased significantly, and ovulation was significantly restored. Real-time PCR showed that the expression of follicle stimulating hormone receptor, inhibin and inhibin in the hUC-MSCs group was significantly restored compared with the POF group. The results of mRNA and miRNA chips also showed that hUC-MSC restored ovarian function at the gene level. long-term treatment effect shows that the multiple transplantation hUC-MSCs group is better than the single transplantation hUC-MSCs group. 60 days after the mice were injected with cyclophosphamide and busulfan, the organ coefficient of multiple transplantation of hUC-MSCs increased compared with the POF group, the number of primary follicles increased, and hormone secretion increased. ConclusionThe results show that multiple trasplantation of hUC-MSCs can promote the recovery of ovarian function in POF mice more than a single transplantation. This study provides a basis for the therapeutic dose and therapeutic effect of hUC-MSCs on POF.


2015 ◽  
Vol 27 (1) ◽  
pp. 255 ◽  
Author(s):  
S. Fatima ◽  
V. Sharma ◽  
S. Saini ◽  
S. Saugandhika ◽  
H. N. Malik ◽  
...  

Stem cells have potential for therapeutic application. Continuous repair of ovarian surface epithelium following folliculogenesis and ovarian carcinoma suggests the presence of stem cells in ovarian epithelial cells. In vitro gametogenesis in livestock will result in large numbers of oocytes production from a single ovary, resulting in faster multiplication of superior germplasm of livestock species, treatment of infertile animals, and conservation of endangered species. The present study was conducted with the objective of in vitro differentiation of putative ovarian surface epithelial stem cells into oocyte-like structures in goat model. Ovary samples of 1- to 2-year-old goats were collected from slaughterhouse. The surface of the ovary was gently scraped using sterile blunt scraper to isolate ovarian surface epithelial stem cells. These scraped cells were cultured in DMEM/F12 supplemented with 20% FBS for 3 weeks in 5% CO2 at 37°C with maximum humidity. The cultured stem cells were characterised for stemness by RT-PCR and immunostaining for Oct4, Sox2, and Nanog genes after 3 weeks. These putative stem cells were in vitro differentiated spontaneously to oocyte-like structures in DMEM/F12 medium and characterised for premeiotic markers by RT-PCR and immunostaining for VASA, DAZL, and STELLA genes. Results of this study provide evidence for the presence of putative stem cells with pluripotent characteristics in the ovarian surface epithelium. The cultured cells were found to be round in shape, with a high nucleus to cytoplasm ratio under inverted microscope, and found positive for stem cell markers of Oct4, Sox2, and Nanog genes. A total of 66 oocyte-like structures were produced from 12 ovaries. These oocyte-like structures were nearly similar to oocytes produced in vivo, both morphologically and in molecular gene expression. The oocyte-like structures were also found positive for premeiotic markers of VASA, DAZL, and STELLA genes by RT-PCR and immunostaining. From this study, we concluded that the ovarian surface epithelial cells have putative stem cells which can be in vitro differentiated into oocyte-like structures in goat. These oocyte-like structures need further characterisation of their surface membrane, more molecular markers, and following their developmental potential. These oocytes can help for multiplication of elite germplasm, curing infertile animals, and saving endangered species.


Sign in / Sign up

Export Citation Format

Share Document