Post-natal oogenesis: a concept for controversy that intensified during the last decade

Zygote ◽  
2013 ◽  
Vol 23 (3) ◽  
pp. 315-326 ◽  
Author(s):  
Yashar Esmaeilian ◽  
Arzu Atalay ◽  
Esra Erdemli

SummaryFor decades, scientists have considered that female mammals are born with a lifetime reserve of oocytes in the ovary, irrevocably fated to decline after birth. However, controversy in the matter of the possible presence of oocytes and granulosa cells that originate from stem cells in the adult mammalian ovaries has been expanded. The restricted supply of oocytes in adult female mammals has been disputed in recent years by supporters of neo-oogenesis, who claim that germline stem cells (GSCs) exist in the ovarian surface epithelium (OSE) or the bone marrow (BM). Differentiation of ovarian stem cells (OSCs) into oocytes, fibroblast-like cells, granulosa phenotype, neural and mesenchymal type cells and generation of germ cells from OSCs under the contribution of an OSC niche that consists of immune system-related cells and hormonal signalling has been claimed. Although these arguments have met with intense suspicion, their confirmation would necessitate the revision of the current classic knowledge of female reproductive biology.

2015 ◽  
Vol 37 (6) ◽  
pp. 2311-2322 ◽  
Author(s):  
Zezheng Pan ◽  
Mengli Sun ◽  
Jia Li ◽  
Fangyue Zhou ◽  
Xia Liang ◽  
...  

Background/Aims: Ovarian germline stem cells (OGSCs) have been shown to mainly exist in the ovarian surface epithelium (OSE), but the activity changes of germline stem cells during different reproductive stages and the potential regulatory signaling pathway are still unknown. The Notch signaling pathway plays a key role in cell development, primordial follicles and stem cell proliferation. However, whether it plays a role in the proliferation of OGSCs is unknown. Here, we analyzed the activity changes of germline stem cells and the correlation between germline stem cells and the Notch signaling pathway. Methods: The expression of germline stem cell markers Mvh, Ooc4 and the Notch molecules Notch1, Hes1, and Hes5 were detected during 3 days (3d), and 2, 12, 20 months (2m, 12m, 20m) mouse ovarian surface epithelium samples. DAPT, a specific inhibitor of the Notch pathway, was used to observe the influence of Notch signaling in the germline stem cells. Results: The results showed that the levels of MVH and OCT4 decreased substantially with reproductive age in ovarian surface epithelium, and the same tendency was detected in the Notch signaling molecules Notch1, Hes1 and Hes5. Dual-IF results showed that the germline stem cell markers were co-expressed with Notch molecules in the ovarian surface epithelium. While, the expression of MVH and OCT4 were reduced when the ovaries were treated with DAPT and the levels were attenuated with increasing dose of DAPT. Conclusion: Taken together, our results indicate that the viability of OGSCs decreased with the age of the mouse ovaries, and the activity of OGSCs in the ovarian surface epithelium may be related to the Notch signaling pathway.


2012 ◽  
Vol 12 (2) ◽  
pp. 151-157 ◽  
Author(s):  
Ewa Chronowska

Stem Cell Characteristics of Ovarian Granulosa Cells - ReviewRecently increasing interest in stem cells of mammalian ovary has been observed. Potential somatic stem cells for the follicular theca and ovarian surface epithelium have been demonstated. On the other hand, despite intensive research, difinitive evidence for stem cell characteristics of granulosa cells is still to be found. Elucidation of stem cell properties of follicular granulosa cells may have important implications both from scientific and clinical point of view. The aim of this work is to review the current knowledge about stem cell properties of cells constituting main somatic compartment of the mammalian ovary, namely granulosa cells.


Reproduction ◽  
2010 ◽  
Vol 140 (2) ◽  
pp. 215-222 ◽  
Author(s):  
Jun-Ping Liu ◽  
He Li

Telomerase, an enzyme complex that binds the chromosome ends (telomeres) and maintains telomere length and integrity, is present in germ cells, proliferative granulosa cells, germline stem cells, and neoplastic cells in the ovary, but it is absent in differentiated or aged cells. Activation of telomerase in the ovary underpins both benign and malignant cell proliferation in several compartments, including the germ cells, membrana granulosa, and the ovarian surface epithelium. The difference in telomerase operation between normal and abnormal cell proliferations may lie in the mechanisms of telomerase activation in a deregulated manner. Recent studies have implicated telomerase activity in ovarian cancer as well as oogenesis and fertility. Inhibition of telomerase and the shortening of telomeres are seen in occult ovarian insufficiency. Studies of how telomerase operates and regulates ovary development may provide insight into the development of both germ cells for ovarian reproductive function and neoplastic cells in ovarian cancer. The current review summarizes the roles of telomerase in the development of oocytes and proliferation of granulosa cells during folliculogenesis and in the process of tumorigenesis. It also describes the regulation of telomerase by estrogen in the ovary.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hyun Joo Lee ◽  
Min Jung Park ◽  
Bo Sun Joo ◽  
Jong Kil Joo ◽  
Yeon Hee Kim ◽  
...  

Abstract Background Several studies have shown that coenzyme Q10 (CoQ10) can rescue ovarian aging and that ovarian surface epithelium (OSE)-derived ovarian stem cells (OSCs) are useful for treating infertility due to ovarian aging. However, few studies have examined the effect of CoQ10 on OSCs. This study was aimed to investigate whether CoQ10 activates OSCs and recovers ovarian function in a 4-vinylcyclohexene diepoxide (VCD)-induced mouse model of ovarian failure. Methods Forty female C57BL/6 mice aged 6 weeks were randomly divided into four groups (n = 10/group): a control group administered saline orally, a CoQ10 group administered 150 mg/kg/day of CoQ10 orally in 1 mL of saline daily for 14 days, a VCD group administered 160 mg/kg/day of VCD i.p. in 2.5 mL of saline/kg for 5 days, and a VCD + CoQ10 group administered VCD i.p. for 5 days injection and CoQ10 (150 mg/kg/day) orally for 14 days. After treatment, follicle counts were evaluated by hematoxylin and eosin (H&E) staining, and ovarian mRNA expressions of Bmp-15, Gdf-9, and c-Kit were examined by quantitative real-time PCR. Serum FSH, AMH, and ROS levels were also measured. Oocyte-like structure counts and the expressions of Oct-4 and MVH were also evaluated after culturing OSE for 3 weeks. In a second experiment, 32 female mice were administered CoQ10 as described above, induced to superovulate using PMSG and hCG, and mated. Numbers of zygotes and embryo development rate were examined. Results Postcultured OSE showed significant increases in the numbers of oocyte-like structure and that the expression of Oct-4 and MVH were higher in the VCD + CoQ10 group than in the VCD group (p < 0.05). Numbers of surviving follicles from primordial to antral follicles, numbers of zygotes retrieved and embryo development rate to blastocyst were significantly greater in the VCD + CoQ10 group than in the VCD group (p < 0.01). Serum AMH level and ovarian expressions of Bmp-15, Gdf-9 and c-Kit were also significantly greater in the VCD + CoQ10 group than in the VCD group (p < 0.05). In contrast, serum ROS level was significantly lower in the VCD + CoQ10 group than in the VCD group (p < 0.05). Conclusion This study shows that CoQ10 stimulates the differentiation of OSE-derived OSCs and confirms that CoQ10 can reduce ROS levels and improve ovarian function and oocyte quality in mice with VCD-induced ovarian failure.


2021 ◽  
Author(s):  
Hyun Joo Lee ◽  
Min Jung Park ◽  
Bo Sun Joo ◽  
Jong Kil Joo ◽  
Yeon Hee Kim ◽  
...  

Abstract Background: Several studies have shown that CoQ10 can rescue ovarian aging and that ovarian surface epithelium (OSE)-derived ovarian stem cells (OSCs) are useful for treating infertility with ovarian aging. However, there are few studies the effect of CoQ10 on OSCs. This study was aimed to investigate whether CoQ10 activates OSCs while recovering ovarian function using 4-vinylcyclohexene diepoxide (VCD)-induced ovarian failure mouse model.Methods: C57BL/6 female mice aged 6 weeks were randomly divided into four groups (n=10/group): (Control) saline and orally, (CoQ10) 150 mg/kg/day orally in 1 mL of saline daily for 14 days, (VCD) 160 mg/kg/day, 2.5 ml/kg ip for 5 days, (VCD+CoQ10) 5 days after VCD injection, CoQ10 (150 mg/kg/day) orally for 14 days. After final treatment of CoQ10, follicle counts were evaluated by hematoxylin and eosin (H&E) staining, and ovarian mRNA expressions of Bmp-15, Gdf-9, and c-Kit were examined by quantitative real-time PCR. Serum FSH, AMH, and ROS levels were also measured. Oocyte-like structure count and expression of Oct-4 and MVH were evaluated from postcultured OSE for 3 weeks. In the second experiment, another 32 female mice were administered with CoQ10 in the same way as above and were superovulated by PMSG and hCG, followed by mated with males. Then, numbers of zygotes ovulated and embryo development rate were examined. Results: Postcultured OSE had significantly increased numbers of oocyte-like structure and expression of Oct-4 and MVH in VCD+CoQ10 group compared to VCD group (p <0.05). Numbers of surviving follicles including from primordial to antral follicles, numbers of zygotes retrieved and embryo development rate to blastocyst were significantly higher in VCD+CoQ10 group compared to VCD group (p <0.01). Serum AMH level and ovarian expression of Bmp-15, Gdf-9, and c-Kit were significantly increased in VCD+CoQ10 group compared to VCD group (p <0.05). In contrast, serum ROS level was significantly decreased in VCD+CoQ10 group compared to VCD group (p <0.05). Conclusion(s): This is the first study to show that CoQ10 stimulates the differentiation of OSE-derived OSCs. Also this study confirms that CoQ10 can reduce ROS levels, leading to improve ovarian function and oocyte quality in ovarian failure mice.


2010 ◽  
Vol 17 (4) ◽  
pp. 498-505 ◽  
Author(s):  
Antonin Bukovsky

AbstractAt the beginning of the last century, reproductive biologists have discussed whether in mammalian species the fetal oocytes persist or are replaced by neo-oogenesis during adulthood. Currently the prevailing view is that neo-oogenesis is functional in lower vertebrates but not in mammalian species. However, contrary to the evolutionary rules, this suggests that females of lower vertebrates have a better opportunity to provide healthy offspring compared to mammals with oocytes subjected to environmental threats for up to several decades. During the last 15 years, a new effort has been made to determine whether the oocyte pool in adult mammals is renewed as well. Most recently, Ji Wu and colleagues reported a production of offspring from female germline stem cells derived from neonatal and adult mouse ovaries. This indicates that both neonatal and adult mouse ovaries carry stem cells capable of producing functional oocytes. However, it is unclear whether neo-oogenesis from ovarian somatic stem cells is physiologically involved in follicular renewal and why menopause occurs. Here we review observations that indicate an involvement of immunoregulation in physiological neo-oogenesis and follicular renewal from ovarian stem cells during the prime reproductive period and propose why menopause occurs in spite of persisting ovarian stem cells.


Author(s):  
Ajeet Kumar Jha ◽  
Anirban Mandal ◽  
Kalyani Ray ◽  
Shyamal Kanti Guha

Background: Few studies have confirmed the presence of ovarian tissue stem cells indicating the capacity for differentiation. Based on this fact, it was hypothesized that mesenchymal stem cells (MSC) were found in ovarian surface epithelium (OSE) of canines that could easily be isolated. Methods: Both left and right ovaries were minced and digested using collagenase to obtain a stromal vascular fraction (SVF). MSCs were characterized using RT-PCR. To ascertain the trilineage differentiation potential, MSCs were stained with respective stain for osteocytes, chondrocytes and adipocytes. Result: We observed elongated, spindle-shaped and fibroblast like appearance of cells after 72 h of initial culture. Expression of MSC specific surface markers were observed through RT-PCR. Using Stem Pro® differentiation medium, OSE were differentiated into osteogenic, chondrogenic and adipogenic lineages and were found to be potential source for isolation, characterization and differentiation of MSCs. Canine (OSE) is easily accessible, multipotent and has high plasticity, holding promise for applications in regenerative medicine.


2016 ◽  
Vol 18 (6) ◽  
pp. 419-428 ◽  
Author(s):  
Soraya Parvari ◽  
Hossein Yazdekhasti ◽  
Zahra Rajabi ◽  
Valliollah Gerayeli Malek ◽  
Tayebeh Rastegar ◽  
...  

2012 ◽  
Vol 24 (1) ◽  
pp. 220
Author(s):  
J. M. Yoo ◽  
J. J. Park ◽  
K. Gobianand ◽  
J. Y. Ji ◽  
J. S. Kim ◽  
...  

Bone marrow (BM)-derived stem cells are capable of transdifferentiation into multilineage cells like muscle, bone, cartilage, fat and nerve cells. In this study, we investigated the capability of mesenchymal stem cells (MSC) derived from BM into germ cell differentiation in the chicken. Chicken MSCs were isolated from BM of day 20 fertilized fetal chicken with Ficoll-Paque Plus. Isolated cells were cultured in advance-DMEM (ADMEM) supplemented with 10% fetal bovine serum and antibiotics. Once confluent, cells were subcultured until five passages. The cultured cells showed fibroblast-like morphology. The cells had positive expressions of Oct4, Sox2 and Nanog. Two induction methods were conducted to examine the ability of transdifferentation into male germ cells. In group 1, MSC were cultured in ADMEM containing retinoic acid and chicken testicular extracts proteins for 10 to 15 days. In group 2, MSC were permeabilized by streptolysin O and treated with chicken testicular protein extracts. In both treatment groups, MSC were cultured in ADMEM containing retinoic acid for 10 to 15 days. We found that chicken MSC had a positive expression of pluripotent proteins such as Oct4, Sox2, Nanog and a small population of chicken MSC seem to transdifferentiate into male germ cell-like cells. These cells expressed early germ cell markers and male germ-cell-specific markers (Dazl, C-kit, Stra8 and DDX4) as analysed by reverse transcription-PCR and immunohistochemistry. These results demonstrated that chicken MSC may differentiate into male germ cells and the same might be used as a potential source of cells for production of transgenic chickens. This study was carried out with the support of Agenda Program (Project No. PJ0064692011), RDA and Republic of Korea.


Sign in / Sign up

Export Citation Format

Share Document