scholarly journals Inhibitor of DNA binding in heart development and cardiovascular diseases

2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Wenyu Hu ◽  
Yanguo Xin ◽  
Jian Hu ◽  
Yingxian Sun ◽  
Yinan Zhao
2007 ◽  
Vol 20 (5) ◽  
pp. 784-789 ◽  
Author(s):  
Wendy J. Hartsock ◽  
Jennifer D. Cohen ◽  
David J. Segal

Author(s):  
Kathryn M. Appleton ◽  
Ian Cushman ◽  
Yuri K. Peterson ◽  
Balachandran Manavalan ◽  
Shaherin Basith ◽  
...  

2014 ◽  
Vol 15 (3) ◽  
pp. 1465-1470 ◽  
Author(s):  
Xiao-Ling Yu ◽  
Tao Jing ◽  
Hui Zhao ◽  
Pei-Jie Li ◽  
Wen-Hua Xu ◽  
...  

Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2021 ◽  
Author(s):  
Chi-Chung Wang ◽  
Yuan-Ling Hsu ◽  
Chi-Jen Chang ◽  
Chia-Jen Wang ◽  
Tzu-Hung Hsiao ◽  
...  

Metastasis is a predominant cause of cancer death and the major challenge in treating lung adenocarcinoma (LADC). Therefore, exploring new metastasis-related genes and their action mechanisms may provide new insights for developing a new combative approach to treat lung cancer. Previously, our research team discovered that the expression of the inhibitor of DNA binding 4 (Id4) was inversely related to cell invasiveness in LADC cells by cDNA microarray screening. However, the functional role of Id4 and its mechanism of action in lung cancer metastasis remain unclear. In this study, we report that the expression of Id4 could attenuate cell migration and invasion in vitro and cancer metastasis in vivo. Detailed analyses indicated that Id4 could promote E-cadherin expression through the binding of Slug, cause the occurrence of mesenchymal-epithelial transition (MET), and inhibit cancer metastasis. Moreover, the examination of the gene expression database (GSE31210) also revealed that high-level expression of Id4/E-cadherin and low-level expression of Slug were associated with a better clinical outcome in LADC patients. In summary, Id4 may act as a metastatic suppressor, which could not only be used as an independent predictor but also serve as a potential therapeutic for LADC treatment.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Haipeng Guo ◽  
Yao Wei Lu ◽  
Zhiqiang Lin ◽  
Zhan-Peng Huang ◽  
Jianming Liu ◽  
...  

Abstract Intercalated discs (ICD), specific cell-to-cell contacts that connect adjacent cardiomyocytes, ensure mechanical and electrochemical coupling during contraction of the heart. Mutations in genes encoding ICD components are linked to cardiovascular diseases. Here, we show that loss of Xinβ, a newly-identified component of ICDs, results in cardiomyocyte proliferation defects and cardiomyopathy. We uncovered a role for Xinβ in signaling via the Hippo-YAP pathway by recruiting NF2 to the ICD to modulate cardiac function. In Xinβ mutant hearts levels of phosphorylated NF2 are substantially reduced, suggesting an impairment of Hippo-YAP signaling. Cardiac-specific overexpression of YAP rescues cardiac defects in Xinβ knock-out mice—indicating a functional and genetic interaction between Xinβ and YAP. Our study reveals a molecular mechanism by which cardiac-expressed intercalated disc protein Xinβ modulates Hippo-YAP signaling to control heart development and cardiac function in a tissue specific manner. Consequently, this pathway may represent a therapeutic target for the treatment of cardiovascular diseases.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Dan Wen ◽  
Yan-Fang Zou ◽  
Yao-Hui Gao ◽  
Qian Zhao ◽  
Yin-Yin Xie ◽  
...  

In this study, rat models of acute kidney injury (AKI) induced by renal ischemia-reperfusion (I/R) and HK-2 cell models of hypoxia-reoxygenation (H/R) were established to investigate the expression of inhibitor of DNA binding 1 (ID1) in AKI, and the regulation relationship between ID1 and hypoxia-inducible factor 1 alpha (HIF-1α). Through western blot, quantitative real-time PCR, immunohistochemistry, and other experiment methods, the induction of ID1 after renal I/R in vivo was observed, which was expressed mainly in renal tubular epithelial cells (TECs). ID1 expression was upregulated in in vitro H/R models at both the protein and mRNA levels. Via RNAi, it was found that ID1 induction was inhibited with silencing of HIF-1α. Moreover, the suppression of ID1 mRNA expression could lead to decreased expression and transcription of HIF-1αduring hypoxia and reoxygenation. In addition, it was demonstrated that both ID1 and HIF-1αcan regulate the transcription of twist. This study demonstrated that ID1 is induced in renal TECs during I/R and can regulate the transcription and expression of HIF-1α.


Sign in / Sign up

Export Citation Format

Share Document