scholarly journals VCP/p97 inhibitor CB-5083 modulates muscle pathology in a mouse model of VCP inclusion body myopathy

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Cheng Cheng ◽  
Lan Weiss ◽  
Henri Leinonen ◽  
Alyaa Shmara ◽  
Hong Z. Yin ◽  
...  

Abstract Background Pathogenic gain of function variants in Valosin-containing protein (VCP) cause a unique disease characterized by inclusion body myopathy with early-onset Paget disease of bone and frontotemporal dementia (also known as Multisystem proteinopathy (MSP)). Previous studies in drosophila models of VCP disease indicate treatment with VCP inhibitors mitigates disease pathology. Earlier-generation VCP inhibitors display off-target effects and relatively low therapeutic potency. New generation of VCP inhibitors needs to be evaluated in a mouse model of VCP disease. In this study, we tested the safety and efficacy of a novel and potent VCP inhibitor, CB-5083 using VCP patient-derived myoblast cells and an animal model of VCP disease. Methods First, we analyzed the effect of CB-5083 in patient-derived myoblasts on the typical disease autophagy and TDP-43 profile by Western blot. Next, we determined the maximum tolerated dosage of CB-5083 in mice and treated the 2-month-old VCPR155H/R155H mice for 5 months with 15 mg/kg CB-5083. We analyzed motor function monthly by Rotarod; and we assessed the end-point blood toxicology, and the muscle and brain pathology, including autophagy and TDP-43 profile, using Western blot and immunohistochemistry. We also treated 12-month-old VCPR155H/+ mice for 6 months and performed similar analysis. Finally, we assessed the potential side effects of CB-5083 on retinal function, using electroretinography in chronically treated VCPR155H/155H mice. Results In vitro analyses using patient-derived myoblasts confirmed that CB-5083 can modulate expression of the proteins in the autophagy pathways. We found that chronic CB-5083 treatment is well tolerated in the homozygous mice harboring patient-specific VCP variant, R155H, and can ameliorate the muscle pathology characteristic of the disease. VCP-associated pathology biomarkers, such as elevated TDP-43 and p62 levels, were significantly reduced. Finally, to address the potential adverse effect of CB-5083 on visual function observed in a previous oncology clinical trial, we analyzed retinal function in mice treated with moderate doses of CB-5083 for 5 months and documented the absence of permanent ocular toxicity. Conclusions Altogether, these findings suggest that long-term use of CB-5083 by moderate doses is safe and can improve VCP disease-associated muscle pathology. Our results provide translationally relevant evidence that VCP inhibitors could be beneficial in the treatment of VCP disease.

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Anichavezhi Devendran ◽  
Rasheed Bailey ◽  
Sumanta Kar ◽  
Francesca Stillitano ◽  
Irene Turnbull ◽  
...  

Background: Heart failure (HF) is a complex clinical condition associated with substantial morbidity and mortality worldwide. The contractile dysfunction and arrhythmogenesis related to HF has been linked to the remodelling of calcium (Ca ++ ) handling. Phospholamban (PLN) has emerged as a key regulator of intracellular Ca ++ concentration. Of the PLN mutations, L39X is intriguing as it has not been fully characterized. This mutation is believed to be functionally equivalent to PLN null (KO) but contrary to PLN KO mice, L39X carriers develop a lethal cardiomyopathy (CMP). Our study aims at using induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) from homozygous L39X carriers to elucidate the role of L39X in human pathophysiology. Our plan also involves the characterization of humanized L39X knock-in mice (KM), which we hypothesize will develop a CMP from mis-localization of PLN and disruption of Ca ++ signalling. Methodology and Results: Mononuclear cells from Hom L39X carriers were obtained to generate 11 integration-free patient-specific iPSC clones. The iPSC-CMs were derived using established protocols. Compared to the WT iPSC-CMs, the Hom L39X derived-CMs PLN had an abnormal cytoplasmic distribution and formed intracellular aggregates, with the loss of perinuclear localization. There was also a 70% and 50% reduction of mRNA and protein expression of PLN respectively in L39X compared to WT iPSC-CMs. These findings indicated that L39X PLN is both under-expressed and mis-localized within the cell. To validate this observation in-vivo, we genetically modified FVB mice to harbour the human L39X. Following electroporation, positively transfected mouse embryonic stem cells were injected into host blastocysts to make humanized KM that were subsequently used to generate either a protamine-Cre (endogenous PLN driven expression) or a cardiac TNT mouse (i.e., CMP specific). Conclusion: Our data confirm an abnormal intracellular distribution of PLN, with the loss of perinuclear accumulation and mis-localization, suggestive of ineffective targeting to or retention of L39X. The mouse model will be critically important to validate the in-vitro observations and provides an ideal platform for future studies centred on the development of novel therapeutic strategies including virally delivered CRISPR/Cas9 for in-vivo gene editing and testing of biochemical signalling pathways.


2008 ◽  
Vol 35 (1) ◽  
pp. 106-115 ◽  
Author(s):  
May Christine V. Malicdan ◽  
Satoru Noguchi ◽  
Yukiko K. Hayashi ◽  
Ichizo Nishino

Distal myopathy with rimmed vacuoles (DMRV), also called hereditary inclusion body myopathy (hIBM), is characterized clinically by weakness and atrophy that initially involves the distal muscles and pathologically by the presence of rimmed vacuoles (RVs) or intracellular protein deposits in myofibers. It is caused by mutations in the UDP- N-acetylglucosamine 2-epimerase/ N-acetylmannosamine kinase ( GNE) gene that is important in sialic acid synthesis. Recently, we generated a mouse model ( Gne−/−h GNED176VTg) that exhibits muscle weakness and pathological changes similar to DMRV patients. To gain better understanding of the pathomechanism of DMRV, we determined temporal changes in the overall motor performance of this model mouse for DMRV in correlation with the structure and function of isolated skeletal muscles and muscle pathology. These DMRV mice exhibited muscle weakness, decreased whole muscle mass and cross-sectional area (CSA), and reduced contractile power in an age-related manner. Single-fiber CSA further supported the finding of muscle atrophy that involved both type I and type II fibers. These results suggest that atrophy is highly correlated with reduced production of force at young age, both in vivo and ex vivo, thereby implicating the important role of atrophy in the pathomechanism of DMRV. In older age, and particularly in gastrocnemius muscles, RVs and intracellular inclusions were seen in type IIA fibers, further aggravating reduction of force and specific increase in twitch-tetanus ratio.


PLoS ONE ◽  
2010 ◽  
Vol 5 (10) ◽  
pp. e13183 ◽  
Author(s):  
Mallikarjun Badadani ◽  
Angèle Nalbandian ◽  
Giles D. Watts ◽  
Jouni Vesa ◽  
Masashi Kitazawa ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 341-341
Author(s):  
Siying Zou ◽  
Alexandra M Teixeira ◽  
Chad D Sanada ◽  
Ping-xia Zhang ◽  
Diane Krause

Abstract Megakaryocytopoiesis, the process by which hematopoietic stem cells develop into mature megakaryocytes (MK), and thrombopoiesis, platelet production/release, are critical for blood homeostasis. We tested the hypothesis that the Rho guanine exchange factor, ARHGEF12 (also known as LARG), is critical for MK differentiation and platelet functions based on the following: 1) ARHGEF12 is part of a recurrent translocation with MLL in acute myeloid leukemia. 2) Both published microarray datasets and deep-sequencing data from our lab on primary human CD34+ cells differentiating into MKs show that ARHGEF12 expression goes up dramatically during MK differentiation. 3) ARHGEF12 is one of the most highly expressed guanine exchange factors in platelets. 4) ARHGEF12 forms a complex with G proteins and stimulates Rho-dependent signals. It is known that platelet activation can be initiated by extracellular stimuli working through G protein-coupled receptors and Rho signaling, suggesting that ARHGEF12 may function in platelet activation. 5) Mice with KO of RhoA (a known ARHGEF12 substrate) in the MK-lineage have macrothrombocytopenia and defective platelet activation. To test this hypothesis, we used ARHGEF12 shRNA mediated KD and an ARHGEF12 specific pharmacological inhibitor (Y16) in both murine and human primary cells, and characterized a LARG KO mouse model for MK and platelet phenotypes, and found: ARHGEF12 is differentially upregulated during MK differentiation and is enriched in platelets Using quantitative RT-PCR and western blot analysis at different timepoints of primary FACSorted Mk progenitors induced to differentiate into mature MK in vitro, ARHGEF12 RNA and protein expression increases during MK differentiation in both the murine and human systems. Also western blot analysis of murine platelet rich plasma shows that ARHGEF12 protein is highly expressed in platelets. ARHGEF12 is essential for human MK differentiation To test the function of ARHGEF12 in Mk differentiation, we used lentiviral shRNA to knockdown ARHGEF12 in FACSorted primary human Mk progenitors from mobilized peripheral blood differentiated in vitro to MK. The results show that ARHGEF12 knockdown blocks MK polyploidization (not shown) and maturation (Fig. A). This was confirmed using a published ARHGEF12 inhibitor (Y16) in the differentiation culture of human MK progenitors, in which there was a dose-dependent block in MK differentiation (Fig. B). These data suggested that ARHGEF12 is essential for human MK differentiation. We researched the function of ARHGEF12 in the murine system using a constitutive ARHGEF12 knockout mouse model. The mice have enlarged platelets (p=0.07) and a decreased platelet count (p=0.01). However, the knockout mice have normal BM cellularity with no change in megakaryocyte number or ploidy, suggesting that ARHGEF12 is dispensable for murine MK differentiation in vivo. ARHGEF12 is essential for platelet function in both the murine and human systems: To test whether ARGEF12 functions in platelet activation, we compared WT versus KO platelet activation in vitro. We tested activation in response to ADP, U46619 (Thromboxane), ADP+U46619, and Thrombin. KO plateelts have significantly reduced activation in response to U46619 and thrombin, with no effects on ADP-induced activation. Analogous studies using the ARHGEF12 inhibitor (Y16) on WT platelets revealed supportive evidence. Lastly, we tested ARHGEF12 function in human platelet aggregation using the Y16 compound. Consistent with the murine data, Y16 blocked platelet aggregation in response to both U46619 and Thrombin. Taken together, these data strongly suggest that ARHGEF12 is essential for platelet function and acts downstream of the Thromboxane and Thrombin receptors. In summary, we found that ARHGEF12 is differentially up-regulated in MK differentiation both in human and in mouse system,. It plays a critical role in human Mk differentiation but is dispensable in murine MK differentiation, and ARHGEF12 is critical for platelet functions in both human and mouse systems, potentially acting downstream of Thromboxane and Thrombin receptors. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document