scholarly journals Chronic capsiate supplementation increases fat-free mass and upper body strength but not the inflammatory response to resistance exercise in young untrained men: a randomized, placebo-controlled and double-blind study

Author(s):  
Vilton Emanoel Lopes de Moura e Silva ◽  
Jason Michael Cholewa ◽  
Ralf Jäger ◽  
Nelo Eidy Zanchi ◽  
Marcelo Conrado de Freitas ◽  
...  

Abstract Background Acute capsaicinoid and capsinoid supplementation has endurance and resistance exercise benefits; however, if these short-term performance benefits translate into chronic benefits when combined with resistance training is currently unknown. This study investigated changes of chronic Capsiate supplementation on muscular adaptations, inflammatory response and performance in untrained men. Methods Twenty untrained men were randomized to ingest 12 mg Capsiate (CAP) or placebo in a parallel, double-blind design. Body composition and performance were measured at pre-training and after 6 weeks of resistance training. An acute resistance exercise session test was performed pre and post-intervention. Blood samples were collected at rest and post-resistance exercise to analyze Tumor necrosis factor- (TNF-), Soluble TNF- receptor (sTNF-r), Interleukin-6 (IL-6) and Interleukin-10 (IL-10). Results Exercise and CAP supplementation increased fat-free mass in comparison to baseline by 1.5 kg (P < 0.001), however, the majority of the increase (1.0 kg) resulted from an increase in total body water. The CAP change scores for fat-free mass were significantly greater in comparison to the placebo (CAP ∆%= 2.1 ± 1.8 %, PLA ∆%= 0.7 ± 1.3 %, P = 0.043) and there was a significant difference between groups in the bench press exercise (P = 0.034) with greater upper body strength change score for CAP (∆%= 13.4 ± 9.1 %) compared to placebo (∆%= 5.8 ± 5.2 %), P = 0.041. CAP had no effect on lower body strength and no supplementation interactions were observed for all cytokines in response to acute resistance exercise (P > 0.05). Conclusion Chronic Capsiate supplementation combined with resistance training during short period (6 weeks) increased fat-free mass and upper body strength but not inflammatory response and performance in young untrained men.

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1627 ◽  
Author(s):  
Paulo Gentil ◽  
James Steele ◽  
Maria C. Pereira ◽  
Rafael P.M. Castanheira ◽  
Antonio Paoli ◽  
...  

Resistance training (RT) offers benefits to both men and women. However, the studies about the differences between men and women in response to an RT program are not conclusive and few data are available about upper body strength response. The aim of this study was to compare elbow flexor strength gains in men and women after 10 weeks of RT. Forty-four college-aged men (22.63 ± 2.34 years) and forty-seven college-aged women (21.62 ± 2.96 years) participated in the study. The RT program was performed two days a week for 10 weeks. Before and after the training period, peak torque (PT) of the elbow flexors was measured with an isokinetic dynamometer. PT values were higher in men in comparison to women in pre- and post-tests (p< 0.01). Both males and females significantly increased elbow flexor strength (p< 0.05); however, strength changes did not differ between genders after 10 weeks of RT program (11.61 and 11.76% for men and women, respectively;p> 0.05). Effect sizes were 0.57 and 0.56 for men and women, respectively. In conclusion, the present study suggests that men and women have a similar upper body strength response to RT.


2018 ◽  
Vol 43 (5) ◽  
pp. 504-509 ◽  
Author(s):  
JohnEric W. Smith ◽  
Ben M. Krings ◽  
Brandon D. Shepherd ◽  
Hunter S. Waldman ◽  
Steven A. Basham ◽  
...  

The purpose of this investigation was to examine the individual and combined effects of ingesting carbohydrates (CHO) and branched-chain amino acids (BCAA) during high-volume upper body resistance exercise (RE) on markers of catabolism and performance. Thirteen resistance-trained males completed 4 experimental trials with supplementation, ingesting beverages containing CHO, BCAA, CHO+BCAA, or placebo (PLA) in a randomized, double-blind design. The beverages were ingested in 118-mL servings 6 times during an ∼60-min RE session consisting of bench press, bent-over row, incline press, and close-grip row. Each RE was performed with 5 sets of repetitions at 65% 1-repetition maximum until volitional fatigue. Blood samples were collected at baseline, immediately postexercise, and 60 min postexercise to assess glucose and insulin. Cortisol was assessed immediately and at 60 min postexercise. No significant performance benefits were observed for any RE. CHO+BCAA (152.4 ± 71.4 ng/mL) resulted in the lowest cortisol levels, which was lower than BCAA and PLA (193.7 ± 88.5, 182.8 ± 67.5 ng/mL, p < 0.05), but not different from CHO (165 ± 76.5 ng/mL, p = 0.342). Postexercise insulin concentrations were significantly higher with CHO (4.79 ± 3.4 mU/L) compared with BCAA and PLA (3.7 ± 2.0, 3.5 ± 1.8 mU/L, p < 0.05), but not different from CHO+BCAA (4.3 ± 2.5 mU/L, p = 0.339). There was no treatment effect for glucose, but glucose significantly increased from baseline to immediately postexercise and significantly decreased at 60 min postexercise. Ingesting beverages containing CHO with or without BCAA during upper body resistance exercise may promote a more favorable postexercise less catabolic environment.


2009 ◽  
Vol 27 (14) ◽  
pp. 1617-1625 ◽  
Author(s):  
Daniel W. Robbins ◽  
Warren B. Young ◽  
David G. Behm ◽  
Warren R. Payne

2017 ◽  
Vol 27 (5) ◽  
pp. 408-420 ◽  
Author(s):  
Fernando Naclerio ◽  
Marcos Seijo ◽  
Eneko Larumbe-Zabala ◽  
Conrad P. Earnest

Beef powder is a new high-quality protein source scarcely researched relative to exercise performance. The present study examined the impact of ingesting hydrolyzed beef protein, whey protein, and carbohydrate on strength performance (1RM), body composition (via plethysmography), limb circumferences and muscular thickness (via ultrasonography), following an 8-week resistance-training program. After being randomly assigned to one of the following groups: Beef, Whey, or Carbohydrate, twenty four recreationally physically active males (n = 8 per treatment) ingested 20 g of supplement, mixed with orange juice, once a day (immediately after workout or before breakfast). Post intervention changes were examined as percent change and 95% CIs. Beef (2.0%, CI, 0.2–2.38%) and Whey (1.4%, CI, 0.2–2.6%) but not Carbohydrate (0.0%, CI, -1.2–1.2%) increased fat-free mass. All groups increased vastus medialis thickness: Beef (11.1%, CI, 6.3–15.9%), Whey (12.1%, CI, 4.0, -20.2%), Carbohydrate (6.3%, CI, 1.9–10.6%). Beef (11.2%, CI, 5.9–16.5%) and Carbohydrate (4.5%, CI, 1.6–7.4%), but not Whey (1.1%, CI, -1.7–4.0%), increased biceps brachialis thickness, while only Beef increased arm (4.8%, CI, 2.3–7.3%) and thigh (11.2%, 95%CI 0.4–5.9%) circumferences. Although the three groups significantly improved 1RM Squat (Beef 21.6%, CI 5.5–37.7%; Whey 14.6%, CI, 5.9–23.3%; Carbohydrate 19.6%, CI, 2.2–37.1%), for the 1RM bench press the improvements were significant for Beef (15.8% CI 7.0–24.7%) and Whey (5.8%, CI, 1.7–9.8%) but not for carbohydrate (11.4%, CI, -0.9-23.6%). Protein-carbohydrate supplementation supports fat-free mass accretion and lower body hypertrophy. Hydrolyzed beef promotes upper body hypertrophy along with similar performance outcomes as observed when supplementing with whey isolate or maltodextrin.


2020 ◽  
Vol 52 (7S) ◽  
pp. 212-212
Author(s):  
Liz Jorn ◽  
William F. Brechue ◽  
Jerry L. Mayhew ◽  
Monica L. Hunter ◽  
Bryan Mann

2016 ◽  
Vol 48 ◽  
pp. 933-934
Author(s):  
Sandro Bartolomei ◽  
Jay R. Hoffman ◽  
Jeffrey R. Stout ◽  
Franco Merni

2011 ◽  
Vol 21 (5) ◽  
pp. 426-435 ◽  
Author(s):  
Ina Garthe ◽  
Truls Raastad ◽  
Jorunn Sundgot-Borgen

Context:When weight loss (WL) is needed, it is recommended that athletes do it gradually by 0.5–1 kg/wk through moderate energy restriction. However, the effect of WL rate on long-term changes in body composition (BC) and performance has not been investigated in elite athletes.Purpose:To compare changes in body mass (BM), fat mass (FM), lean body mass (LBM), and performance 6 and 12 mo after 2 different WL interventions promoting loss of 0.7% vs. 1.4% of body weight per wk in elite athletes.Methods:Twenty-three athletes completed 6- and 12-mo postintervention testing (slow rate [SR] n = 14, 23.5 ± 3.3 yr, 72.2 ± 12.2 kg; fast rate [FR] n = 9, 21.4 ± 4.0 yr, 71.6 ± 12.0 kg). The athletes had individualized diet plans promoting the predetermined weekly WL during intervention, and 4 strength-training sessions per wk were included. BM, BC, and strength (1-repetition maximum) were tested at baseline, postintervention, and 6 and 12 mo after the intervention.Results:BM decreased by ~6% in both groups during the intervention but was not different from baseline values after 12 mo. FM decreased in SR and FR during the intervention by 31% ± 3% vs. 23% ± 4%, respectively, but was not different from baseline after 12 mo. LBM and upper body strength increased more in SR than in FR (2.0% ± 1.3% vs. 0.8% ± 1.1% and 12% ± 2% vs. 6% ± 2%) during the intervention, but after 12 mo there were no significant differences between groups in BC or performance.Conclusion:There were no significant differences between groups after 12 mo, suggesting that WL rate is not the most important factor in maintaining BC and performance after WL in elite athletes.


Sign in / Sign up

Export Citation Format

Share Document