scholarly journals Effect of food sources of nitrate, polyphenols, L-arginine and L-citrulline on endurance exercise performance: a systematic review and meta-analysis of randomised controlled trials

Author(s):  
Noah M. A. d’Unienville ◽  
Henry T. Blake ◽  
Alison M. Coates ◽  
Alison M. Hill ◽  
Maximillian J. Nelson ◽  
...  

Abstract Background Increasing nitric oxide bioavailability may induce physiological effects that enhance endurance exercise performance. This review sought to evaluate the performance effects of consuming foods containing compounds that may promote nitric oxide bioavailability. Methods Scopus, Web of Science, Ovid Medline, EMBASE and SportDiscus were searched, with included studies assessing endurance performance following consumption of foods containing nitrate, L-arginine, L-citrulline or polyphenols. Random effects meta-analysis was conducted, with subgroup analyses performed based on food sources, sex, fitness, performance test type and supplementation protocol (e.g. duration). Results One hundred and eighteen studies were included in the meta-analysis, which encompassed 59 polyphenol studies, 56 nitrate studies and three L-citrulline studies. No effect on exercise performance following consumption of foods rich in L-citrulline was identified (SMD=-0.03, p=0.24). Trivial but significant benefits were demonstrated for consumption of nitrate and polyphenol-rich foods (SMD=0.15 and 0.17, respectively, p<0.001), including performance in time-trial, time-to-exhaustion and intermittent-type tests, and following both acute and multiple-day supplementation, but no effect of nitrate or polyphenol consumption was found in females. Among nitrate-rich foods, beneficial effects were seen for beetroot, but not red spinach or Swiss chard and rhubarb. For polyphenol-rich foods, benefits were found for grape, (nitrate-depleted) beetroot, French maritime pine, Montmorency cherry and pomegranate, while no significant effects were evident for New Zealand blackcurrant, cocoa, ginseng, green tea or raisins. Considerable heterogeneity between polyphenol studies may reflect food-specific effects or differences in study designs and subject characteristics. Well-trained males (V̇O2max ≥65 ml.kg.min-1) exhibited small, significant benefits following polyphenol, but not nitrate consumption. Conclusion Foods rich in polyphenols and nitrate provide trivial benefits for endurance exercise performance, although these effects may be food dependent. Highly trained endurance athletes do not appear to benefit from consuming nitrate-rich foods but may benefit from polyphenol consumption. Further research into food sources, dosage and supplementation duration to optimise the ergogenic response to polyphenol consumption is warranted. Further studies should evaluate whether differential sex-based responses to nitrate and polyphenol consumption are attributable to physiological differences or sample size limitations. Other The review protocol was registered on the Open Science Framework (https://osf.io/u7nsj) and no funding was provided.

2021 ◽  
Vol 12 ◽  
Author(s):  
Michael P. Massett ◽  
Caitlyn Matejka ◽  
Hyoseon Kim

Inbred and genetically modified mice are frequently used to investigate the molecular mechanisms responsible for the beneficial adaptations to exercise training. However, published paradigms for exercise training in mice are variable, making comparisons across studies for training efficacy difficult. The purpose of this systematic review and meta-analysis was to characterize the diversity across published treadmill-based endurance exercise training protocols for mice and to identify training protocol parameters that moderate the adaptations to endurance exercise training in mice. Published studies were retrieved from PubMed and EMBASE and reviewed for the following inclusion criteria: inbred mice; inclusion of a sedentary group; and exercise training using a motorized treadmill. Fifty-eight articles met those inclusion criteria and also included a “classical” marker of training efficacy. Outcome measures included changes in exercise performance, V˙O2max, skeletal muscle oxidative enzyme activity, blood lactate levels, or exercise-induced cardiac hypertrophy. The majority of studies were conducted using male mice. Approximately 48% of studies included all information regarding exercise training protocol parameters. Meta-analysis was performed using 105 distinct training groups (i.e., EX-SED pairs). Exercise training had a significant effect on training outcomes, but with high heterogeneity (Hedges’ g=1.70, 95% CI=1.47–1.94, Tau2=1.14, I2=80.4%, prediction interval=−0.43–3.84). Heterogeneity was partially explained by subgroup differences in treadmill incline, training duration, exercise performance test type, and outcome variable. Subsequent analyses were performed on subsets of studies based on training outcome, exercise performance, or biochemical markers. Exercise training significantly improved performance outcomes (Hedges’ g=1.85, 95% CI=1.55–2.15). Subgroup differences were observed for treadmill incline, training duration, and exercise performance test protocol on improvements in performance. Biochemical markers also changed significantly with training (Hedges’ g=1.62, 95% CI=1.14–2.11). Subgroup differences were observed for strain, sex, exercise session time, and training duration. These results demonstrate there is a high degree of heterogeneity across exercise training studies in mice. Training duration had the most significant impact on training outcome. However, the magnitude of the effect of exercise training varies based on the marker used to assess training efficacy.


Nitric Oxide ◽  
2016 ◽  
Vol 59 ◽  
pp. 10-20 ◽  
Author(s):  
Stephen J. Bailey ◽  
Jamie R. Blackwell ◽  
Ewan Williams ◽  
Anni Vanhatalo ◽  
Lee J. Wylie ◽  
...  

2004 ◽  
Vol 14 (2) ◽  
pp. 236-242 ◽  
Author(s):  
Allen C. Parcell ◽  
Jason M. Smith ◽  
Shane S. Schulthies ◽  
J. William Myrer ◽  
Gilbert Fellingham

It is purported that supplementation with Cordyceps Sinensis (CordyMax Cs-4) will improve oxidative capacity and endurance performance. The intent of this investigation was to examine the effects of CordyMax Cs-4 supplementation on VO2peak, ventilatory threshold, and endurance performance in endurance-trained cyclists. Twenty-two male cyclists participated in 5 weeks of supplementation with CordyMax Cs-4 tablets (3 g/d). Training intensity was maintained by weekly documentation and reporting throughout the 5-week period. Subjects completed a VO2peak test and work-based time trial prior to and following the supplementation period. VO2peak was similar within and between placebo (PLA) and treatment (CS) groups prior to (59.9 ± 5.9 vs. 59.1 ± 5.4 ml/kg/min, respectively) and following (60.1 ± 5.5 vs. 57.1 ± 5.8 ml/kg/min, respectively) the supplementation period. Ventilatory threshold (VT) was measured at 72 ± 10% of VO2peak in P and T prior to supplementation and did not change in either group following the supplementation. PLA completed the time trial in 61.4 ± 2.4 min compared to 62.1 ± 4.0 min in T. Time trial measurements did not differ between groups, nor did they change in response to supplementation. It is concluded that 5 weeks of CordyMax Cs-4 supplementation has no effect on aerobic capacity or endurance exercise performance in endurance-trained male cyclists.


2013 ◽  
Vol 115 (3) ◽  
pp. 355-364 ◽  
Author(s):  
Markus Amann ◽  
Massimo Venturelli ◽  
Stephen J. Ives ◽  
John McDaniel ◽  
Gwenael Layec ◽  
...  

This study sought to determine whether afferent feedback associated with peripheral muscle fatigue inhibits central motor drive (CMD) and thereby limits endurance exercise performance. On two separate days, eight men performed constant-load, single-leg knee extensor exercise to exhaustion (85% of peak power) with each leg (Leg1 and Leg2). On another day, the performance test was repeated with one leg (Leg1) and consecutively (within 10 s) with the other/contralateral leg (Leg2-post). Exercise-induced quadriceps fatigue was assessed by reductions in potentiated quadriceps twitch-force from pre- to postexercise (ΔQtw,pot) in response to supramaximal magnetic femoral nerve stimulation. The output from spinal motoneurons, estimated from quadriceps electromyography (iEMG), was used to reflect changes in CMD. Rating of perceived exertion (RPE) was recorded during exercise. Time to exhaustion (∼9.3 min) and exercise-induced ΔQtw,pot (∼51%) were similar in Leg1 and Leg2 ( P > 0.5). In the consecutive leg trial, endurance performance of the first leg was similar to that observed during the initial trial (∼9.3 min; P = 0.8); however, time to exhaustion of the consecutively exercising contralateral leg (Leg2-post) was shorter than the initial Leg2 trial (4.7 ± 0.6 vs. 9.2 ± 0.4 min; P < 0.01). Additionally, ΔQtw,pot following Leg2-post was less than Leg2 (33 ± 3 vs 52 ± 3%; P < 0.01). Although the slope of iEMG was similar during Leg2 and Leg2-post, end-exercise iEMG following Leg2-post was 26% lower compared with Leg2 ( P < 0.05). Despite a similar rate of rise, RPE was consistently ∼28% higher throughout Leg2-post vs. Leg2 ( P < 0.05). In conclusion, this study provides evidence that peripheral fatigue and associated afferent feedback limits the development of peripheral fatigue and compromises endurance exercise performance by inhibiting CMD.


2019 ◽  
Vol 127 (5) ◽  
pp. 1257-1266 ◽  
Author(s):  
Thomas J. Hureau ◽  
Joshua C. Weavil ◽  
Taylor S. Thurston ◽  
Hsuan-Yu Wan ◽  
Jayson R. Gifford ◽  
...  

We sought to investigate the role of group III/IV muscle afferents in limiting endurance exercise performance, independently of their role in optimizing locomotor muscle O2 delivery. While breathing 100% O2 to ensure a similar arterial O2 content ([Formula: see text]) in both trials, eight male cyclists performed 5-km time trials under control conditions (HCTRL) and with lumbar intrathecal fentanyl (HFENT) impairing neural feedback from the lower limbs. After each time trial, common femoral artery blood flow (FBF) was quantified (Doppler ultrasound) during constant-load cycling performed at the average power of the preceding time trial. The assessment of end-tidal gases, hemoglobin content and saturation, and FBF facilitated the calculation of leg O2 delivery. Locomotor muscle activation during cycling was estimated from vastus lateralis EMG. With electrical femoral nerve stimulation, peripheral and central fatigue were quantified by pre- to postexercise decreases in quadriceps twitch torque (ΔQtw) and voluntary activation (ΔVA), respectively. FBF (~16 mL·min−1·W−1; P = 0.6), [Formula: see text] (~24 mL O2/dL; P = 0.9), and leg O2 delivery (~0.38 mL O2·min−1·W−1; P = 0.9) were not different during HCTRL and HFENT. Mean power output and time to completion were significantly improved by 9% (~310 W vs. ~288 W) and 3% (~479 s vs. ~463 s), respectively, during HFENT compared with HCTRL. Quadriceps muscle activation was 9 ± 7% higher during HFENT compared with HCTRL ( P < 0.05). ΔQtw was significantly greater in HFENT compared with HCTRL (54 ± 8% vs. 39 ± 9%), whereas ΔVA was not different (~5%; P = 0.3) in both trials. These findings reveal that group III/IV muscle afferent feedback limits whole body endurance exercise performance and peripheral fatigue by restricting neural activation of locomotor muscle. NEW & NOTEWORTHY Group III/IV muscle afferent feedback facilitates endurance performance by optimizing locomotor muscle O2 delivery but also limits performance by restricting neural drive to locomotor muscle. To isolate the performance-limiting effect of these sensory neurons, we pharmacologically attenuated their central projection during a cycling time trial while controlling for locomotor muscle O2 delivery. With no difference in leg O2 delivery, afferent blockade attenuated the centrally mediated restriction in motoneuronal output and improved cycling performance.


2013 ◽  
Vol 23 (5) ◽  
pp. 522-532 ◽  
Author(s):  
Matthew W. Hoon ◽  
Nathan A. Johnson ◽  
Phillip G. Chapman ◽  
Louise M. Burke

The purpose of this review was to examine the effect of nitrate supplementation on exercise performance by systematic review and meta-analysis of controlled human studies. A search of four electronic databases and cross-referencing found 17 studies investigating the effect of inorganic nitrate supplementation on exercise performance that met the inclusion criteria. Beetroot juice and sodium nitrate were the most common supplements, with doses ranging from 300 to 600 mg nitrate and prescribed in a manner ranging from a single bolus to 15 days of regular ingestion. Pooled analysis showed a significant moderate benefit (ES = 0.79, 95% CI: 0.23–1.35) of nitrate supplementation on performance for time to exhaustion tests (p = .006). There was a small but insignificant beneficial effect on performance for time trials (ES = 0.11, 95% CI: –0.16–0.37) and graded exercise tests (ES = 0.26, 95% CI: –0.10–0.62). Qualitative analysis suggested that performance benefits are more often observed in inactive to recreationally active individuals and when a chronic loading of nitrate over several days is undertaken. Overall, these results suggest that nitrate supplementation is associated with a moderate improvement in constant load time to exhaustion tasks. Despite not reaching statistical significance, the small positive effect on time trial or graded exercise performance may be meaningful in an elite sport context. More data are required to clarify the effect of nitrate supplementation on exercise performance and to elucidate the optimal way to implement supplementation.


2020 ◽  
Vol 128 (2) ◽  
pp. 390-396 ◽  
Author(s):  
Karleigh E. Bradbury ◽  
Beau R. Yurkevicius ◽  
Katherine M. Mitchell ◽  
Kirsten E. Coffman ◽  
Roy M. Salgado ◽  
...  

Acetazolamide (AZ) is a medication commonly used to prevent acute mountain sickness (AMS) during rapid ascent to high altitude. However, it is unclear whether AZ use impairs exercise performance; previous literature regarding this topic is equivocal. The purpose of this study was to evaluate the impact of AZ on time-trial (TT) performance during a 30-h exposure to hypobaric hypoxia equivalent to 3,500-m altitude. Ten men [sea-level peak oxygen consumption (VO2peak): 50.8 ± 6.5 mL·kg−1·min−1; body fat %: 20.6 ± 5.2%] completed 2 30-h exposures at 3,500 m. In a crossover study design, subjects were given 500 mg/day of either AZ or a placebo. Exercise testing was completed 2 h and 24 h after ascent and consisted of 15-min steady-state treadmill walking at 40%–45% sea-level VO2peak, followed by a 2-mile self-paced treadmill TT. AMS was assessed after ~12 h and 22 h at 3,500 m. The incidence of AMS decreased from 40% with placebo to 0% with AZ. Oxygen saturation was higher ( P < 0.05) in AZ versus placebo trials at the end of the TT after 2 h (85 ± 3% vs. 79 ± 3%) and 24 h (86 ± 3% vs. 81 ± 4%). There was no difference in time to complete 2 miles between AZ and PL after 2 h (20.7 ± 3.2 vs. 22.7 ± 5.0 min, P > 0.05) or 24 h (21.5 ± 3.4 vs. 21.1 ± 2.9 min, P > 0.05) of exposure to altitude. Our results suggest that AZ (500 mg/day) does not negatively impact endurance exercise performance at 3,500 m. NEW & NOTEWORTHY To our knowledge, this is the first study to examine the impact of acetazolamide (500 mg/day) versus placebo on self-paced, peak-effort exercise performance using a short-duration exercise test in a hypobaric hypoxic environment with a repeated-measures design. In the present study, acetazolamide did not impact exercise performance after 2-h or 24-h exposure to 3,500-m simulated altitude.


2020 ◽  
Vol 15 (3) ◽  
pp. 298-308 ◽  
Author(s):  
Pedro L. Valenzuela ◽  
Javier S. Morales ◽  
Adrián Castillo-García ◽  
Alejandro Lucia

Purpose: To determine the acute effects of ketone supplementation on exercise performance (primary outcome) and physiological and perceptual responses to exercise (secondary outcomes). Methods: A systematic search was conducted in PubMed, Web of Science, and SPORTDiscus (since inception to July 21, 2019) to find randomized controlled trials assessing the effects of acute ketone supplementation compared with a drink containing no ketones (ie, control intervention). The standardized mean difference (Hedges g) between interventions and 95% confidence interval (CI) were computed using a random-effects model. Results: Thirteen studies met all inclusion criteria. No significant differences were observed between interventions for overall exercise performance (Hedges g = −0.05; 95% CI, −0.30 to 0.20; P = .68). Subanalyses revealed no differences between interventions when analyzing endurance time-trial performance (g = −0.04; 95% CI, −0.35 to 0.28; P = .82) or when assessing the separate effects of supplements containing ketone esters (g = −0.07; 95% CI, −0.38 to 0.24; P = .66) or salts (g = −0.02; 95% CI, −0.45 to 0.41; P = .93). All studies reported increases in plasma ketone concentration after acute ketone supplementation, but no consistent effects were reported on the metabolic (plasma lactate and glucose levels), respiratory (respiratory exchange ratio, oxygen uptake, and ventilatory rate), cardiovascular (heart rate), or perceptual responses to exercise (rating of perceived exertion). Conclusions: The present findings suggest that ketone supplementation exerts no clear influence on exercise performance (from sprints to events lasting up to ∼50 min) or metabolic, respiratory, cardiovascular, or perceptual responses to exercise. More research is needed to elucidate if this strategy could provide ergogenic effects on other exercise types (eg, ultraendurance exercise).


Sports ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 188 ◽  
Author(s):  
Man Tong Chua ◽  
Govindasamy Balasekaran ◽  
Mohammed Ihsan ◽  
Abdul Rashid Aziz

The purpose of this study is to investigate the effects of ingesting either a high glycaemic index (HGI) or low glycaemic index (LGI) carbohydrate meal (preceding a 12 h overnight fast and where the meal was ingested 45-min prior to activity) on intermittent sprint and endurance exercise performance. Ten male varsity athletes from intermittent sports (age 23.6 ± 1.7 years, VO2max 51.9 ± 4.7 mL·kg−1·min−1) underwent a peak velocity (Vpeak) test and familiarisation session, followed by two experimental sessions in random order. Experimental sessions involved the ingestion of either an HGI or LGI meal, followed by the completion of the modified Loughborough Intermittent Shuttle Test (mLIST). There was no significant difference between HGI or LGI meals on sprint times (p = 0.62) and distance to exhaustion (p = 0.54) in the mLIST. Exercise heart rate, blood lactate and ratings of perceived exertion were also similar between the two meal trials throughout the mLIST (all p > 0.05). Subjective ratings of hunger, fullness, satiety and satisfaction were also not significantly different between the two meals. In conclusion, consuming either an HGI or LGI meal after a prolonged 12 h fast and ingesting the meal 45 min prior to exercise did not differ in either physiological, subjective and intermittent sprint and endurance performance outcomes.


Sign in / Sign up

Export Citation Format

Share Document