scholarly journals In vivo analysis of Nef’s role in HIV-1 replication, systemic T cell activation and CD4+ T cell loss

Retrovirology ◽  
2015 ◽  
Vol 12 (1) ◽  
Author(s):  
Richard L Watkins ◽  
John L Foster ◽  
J Victor Garcia
Blood ◽  
2011 ◽  
Vol 117 (23) ◽  
pp. 6184-6192 ◽  
Author(s):  
Liguo Zhang ◽  
Qi Jiang ◽  
Guangming Li ◽  
Jerry Jeffrey ◽  
Grigoriy I. Kovalev ◽  
...  

AbstractAlthough plasmacytoid dendritic cells (pDCs) are involved in HIV-1 pathogenesis, the precise mechanism of interaction between pDCs and HIV-1 in vivo is not clear. The conflicting reports in HIV-1–infected patients highlight the importance of studying the interaction between HIV-1 and pDCs in relevant in vivo models. The rag2/γC double knockout (DKO) mouse supports reconstitution of a functional human immune system in central and peripheral lymphoid organs. We report here that functional pDCs were developed in the BM and peripheral lymphoid organs in humanized DKO (DKO-hu) mice. We show that pDCs from both BM and spleen were activated and productively infected during early HIV infection. The activation level of pDCs correlated with that of CD4+ T-cell activation and apoptosis. Although CD4+ T cells were preferentially depleted, pDCs were maintained but functionally impaired in the BM and spleen of HIV-infected DKO-hu mice. We conclude that HIV-1 can efficiently infect, activate, and impair pDCs in the BM and spleen, in correlation with CD4+ T-cell depletion. The humanized mouse will serve as a relevant model to investigate the development and function of pDCs and their role during HIV-1 pathogenesis in vivo.


2011 ◽  
Vol 139 (2) ◽  
pp. 142-154 ◽  
Author(s):  
Pierre-Alain Rubbo ◽  
Edouard Tuaillon ◽  
Karine Bolloré ◽  
Vincent Foulongne ◽  
Arnaud Bourdin ◽  
...  

2019 ◽  
Vol 16 (4) ◽  
pp. 302-314
Author(s):  
Chinnambedu Ravichandran Swathirajan ◽  
Ramachandran Vignesh ◽  
Greer Waldrop ◽  
Uma Shanmugasundaram ◽  
Pannerselvam Nandagopal ◽  
...  

Background:Anti-viral cytokine expressions by cytotoxic T-cells and lower activation rates have been reported to correlate with suppressed HIV replication in long-term non-progressors (LTNP). Immune mechanisms underlying disease non-progression in LTNP might vary with HIV-1 subtype and geographical locations.Objective:This study evaluates cytokine expression and T-cells activation in relation to disease non-progression in LTNP.Methods:HIV-1 Subtype C infected LTNP (n=20) and progressors (n=15) were enrolled and flowcytometry assays were performed to study HIV-specific CD8 T-cells expressing IL-2, IFN-γ, TNF-α and MIP-1β against gag and env peptides. CD4+ T-cell activation was evaluated by surface expression of HLADR and CD38.Results:Proportions of cytokines studied did not differ significantly between LTNP and progressors, while contrasting correlations with disease progression markers were observed in LTNP. CD4+ T-cell activation rates were significantly lower in LTNP compared to progressors which indicate the potential role of T-cell activation rates in disease non-progression in LTNP.Conclusion:LTNP and progressors showed similar CD8+ T-cell responses, but final conclusions can be drawn only by comparing multiple immune factors in larger LTNP cohort with HIV-1 infected individuals at various levels of disease progression. A possible role of HIV-1 subtype variation and ethnic differences in addition to host-genetic and viral factors cannot be ruled out.


2020 ◽  
Vol 94 (16) ◽  
Author(s):  
Elina El-Badry ◽  
Gladys Macharia ◽  
Daniel Claiborne ◽  
Kelsie Brooks ◽  
Darío A. Dilernia ◽  
...  

ABSTRACT The influence of biological sex on disease progression in HIV-1-infected individuals has been focused on the chronic stage of infection, but little is known about how sex differences influence acute HIV-1 infection. We observed profound differences in viral load and CD4+ T cell activation from the earliest time points in men and women in a Zambian heterosexual acute infection cohort. Women exhibited a >2-fold higher rate of CD4+ T cell loss despite significantly lower viral loads (VL) than men. The importance of studying acute infection was highlighted by the observation that very early in infection, women exhibited significantly higher levels of CD4+ T cell activation, a difference that was lost over the first 3 years of infection as activation in men increased. In women, activation of CD4+ T cells in the acute phase was significantly correlated with plasma levels of 17β-estradiol (E2). However, unlike in men, higher CD4+ T cell activation in women was not associated with higher VL. In contrast, a higher E2 level in early infection was associated with lower early and set-point VL in women. We attribute this to an inhibitory effect of estradiol on virus replication, which we were able to observe with relevant transmitted/founder viruses in vitro. Thus, estradiol plays a key role in defining major differences between men and women during early HIV-1 infection by contributing to both viral control and CD4+ T cell loss, an effect that extends into the chronic phase of the disease. IMPORTANCE Previous studies have identified sex-specific differences during chronic HIV-1 infection, but little is known about sex differences in the acute phase, or how disparities in the initial response to the virus may affect disease. We demonstrate that restriction of viral load in women begins during acute infection and is maintained into chronic infection. Despite this, women exhibit more rapid CD4+ T cell loss than men. These profound differences are influenced by 17β-estradiol, which contributes both to T cell activation and to reduced viral replication. Thus, we conclude that estradiol plays a key role in shaping responses to early HIV-1 infection that influence the chronic phase of disease.


2020 ◽  
Vol 11 ◽  
Author(s):  
Miriam Rosás-Umbert ◽  
Marta Ruiz-Riol ◽  
Marco A. Fernández ◽  
Marta Marszalek ◽  
Pep Coll ◽  
...  

2003 ◽  
Vol 171 (12) ◽  
pp. 6502-6509 ◽  
Author(s):  
Amy J. Reed ◽  
Hooman Noorchashm ◽  
Susan Y. Rostami ◽  
Yasaman Zarrabi ◽  
Alison R. Perate ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document