scholarly journals An In Vivo Mouse Model to Measure Naïve CD4 T Cell Activation, Proliferation and Th1 Differentiation Induced by Bone Marrow-derived Dendritic Cells

Author(s):  
Raquel Toribio-Fernandez ◽  
Virginia Zorita ◽  
Beatriz Herrero-Fernandez ◽  
Jose M. Gonzalez-Granado
Blood ◽  
2008 ◽  
Vol 112 (13) ◽  
pp. 5074-5083 ◽  
Author(s):  
Abdelilah Wakkach ◽  
Anna Mansour ◽  
Romain Dacquin ◽  
Emmanuel Coste ◽  
Pierre Jurdic ◽  
...  

Abstract Finding that activated T cells control osteoclast (OCL) differentiation has revealed the importance of the interactions between immune and bone cells. Dendritic cells (DCs) are responsible for T-cell activation and share common precursors with OCLs. Here we show that DCs participate in bone resorption more directly than simply through T-cell activation. We show that, among the splenic DC subsets, the conventional DCs have the higher osteoclastogenic potential in vitro. We demonstrate that conventional DCs differentiate into functional OCLs in vivo when injected into osteopetrotic oc/oc mice defective in OCL resorptive function. Moreover, this differentiation involves the presence of activated CD4+ T cells controlling a high RANK-L expression by bone marrow stromal cells. Our results open new insights in the differentiation of OCLs and DCs and offer new basis for analyzing the relations between bone and immune systems.


2004 ◽  
Vol 72 (7) ◽  
pp. 4233-4239 ◽  
Author(s):  
Andrew L. Leisewitz ◽  
Kirk A. Rockett ◽  
Bonginkosi Gumede ◽  
Margaret Jones ◽  
Britta Urban ◽  
...  

ABSTRACT Dendritic cells, particularly those residing in the spleen, are thought to orchestrate acquired immunity to malaria, but it is not known how the splenic dendritic cell population responds to malaria infection and how this response compares with the responses of other antigen-presenting cells. We investigated this question for Plasmodium chabaudi AS infection in C57BL/6 mice. We found that dendritic cells, defined here by the CD11c marker, migrated from the marginal zone of the spleen into the CD4+ T-cell area within 5 days after parasites entered the bloodstream. This contrasted with the results observed for the macrophage and B-cell populations, which expanded greatly but did not show any comparable migration. Over the same time period dendritic cells showed upregulation of CD40, CD54, and CD86 costimulatory molecules that are required for successful T-cell activation. In dendritic cells, the peak intracellular gamma interferon expression (as shown by fluorescence-activated cell sorting) was on day 5, 2 days earlier than the peak expression in B-cells or macrophages. These findings show that splenic dendritic cells are actively engaged in the earliest phase of malarial infection in vivo and are likely to be critical in shaping the subsequent immune response.


Bone ◽  
2021 ◽  
pp. 116292
Author(s):  
S.E. Cifuentes-Mendiola ◽  
D.L. Solis-Suarez ◽  
A. Martínez-Dávalos ◽  
M. Godínez-Victoria ◽  
A.L. García-Hernández

2019 ◽  
Vol 11 (2) ◽  
pp. 108-123
Author(s):  
Dan Tong ◽  
Li Zhang ◽  
Fei Ning ◽  
Ying Xu ◽  
Xiaoyu Hu ◽  
...  

Abstract Common γ chain cytokines are important for immune memory formation. Among them, the role of IL-2 remains to be fully explored. It has been suggested that this cytokine is critically needed in the late phase of primary CD4 T cell activation. Lack of IL-2 at this stage sets for a diminished recall response in subsequent challenges. However, as IL-2 peak production is over at this point, the source and the exact mechanism that promotes its production remain elusive. We report here that resting, previously antigen-stimulated CD4 T cells maintain a minimalist response to dendritic cells after their peak activation in vitro. This subtle activation event may be induced by DCs without overt presence of antigen and appears to be stronger if IL-2 comes from the same dendritic cells. This encounter reactivates a miniature IL-2 production and leads a gene expression profile change in these previously activated CD4 T cells. The CD4 T cells so experienced show enhanced reactivation intensity upon secondary challenges later on. Although mostly relying on in vitro evidence, our work may implicate a subtle programing for CD4 T cell survival after primary activation in vivo.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1284
Author(s):  
Natalia Trempolec ◽  
Charline Degavre ◽  
Bastien Doix ◽  
Davide Brusa ◽  
Cyril Corbet ◽  
...  

For poorly immunogenic tumors such as mesothelioma there is an imperious need to understand why antigen-presenting cells such as dendritic cells (DCs) are not prone to supporting the anticancer T cell response. The tumor microenvironment (TME) is thought to be a major contributor to this DC dysfunction. We have reported that the acidic TME component promotes lipid droplet (LD) formation together with epithelial-to-mesenchymal transition in cancer cells through autocrine transforming growth factor-β2 (TGF-β2) signaling. Since TGF-β is also a master regulator of immune tolerance, we have here examined whether acidosis can impede immunostimulatory DC activity. We have found that exposure of mesothelioma cells to acidosis promotes TGF-β2 secretion, which in turn leads to LD accumulation and profound metabolic rewiring in DCs. We have further documented how DCs exposed to the mesothelioma acidic milieu make the anticancer vaccine less efficient in vivo, with a reduced extent of both DC migratory potential and T cell activation. Interestingly, inhibition of TGF-β2 signaling and diacylglycerol O-acyltransferase (DGAT), the last enzyme involved in triglyceride synthesis, led to a significant restoration of DC activity and anticancer immune response. In conclusion, our study has identified that acidic mesothelioma milieu drives DC dysfunction and altered T cell response through pharmacologically reversible TGF-β2-dependent mechanisms.


2005 ◽  
Vol 174 (8) ◽  
pp. 4696-4705 ◽  
Author(s):  
Jelena S. Bezbradica ◽  
Aleksandar K. Stanic ◽  
Naoto Matsuki ◽  
Helene Bour-Jordan ◽  
Jeffrey A. Bluestone ◽  
...  

2003 ◽  
Vol 171 (12) ◽  
pp. 6502-6509 ◽  
Author(s):  
Amy J. Reed ◽  
Hooman Noorchashm ◽  
Susan Y. Rostami ◽  
Yasaman Zarrabi ◽  
Alison R. Perate ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2154-2154
Author(s):  
Jing-Xia Li ◽  
Jian-Ming Li ◽  
Edmund K Waller

Abstract Introduction: Pre-clinical murine experiments and clinical data from allogeneic bone marrow transplantation (allo-BMT) have shown that increased numbers of plasmacytoid dendritic cells (pDC) in the bone marrow graft results in better clinical outcomes with less severe graft-versus-host disease (GvHD) and improved survival. The mechanism by which donor pDC modulate GvHD is unknown. Knowing that vasoactive intestinal polypeptide (VIP) is an immunosuppressive peptide , we reasoned that VIP signaling might play a role in regulating T-cell activation and expansion, and the VIP pathway may be a potential therapeutic target for regulating GvHD in allo-BMT. We have tested the hypothesis that VIP synthesis by donor pDCs can modulate T cell alloreactivity. Methods: To explore the mechanisms by which pDC and VIP signaling regulate T cell activation in murine allo-BMT, we prepared B6-background donor cell grafts and transplanted them into lethally irradiated B10.BR recipients. In experiment 1, recipients were transplanted with grafts containing the combination of 5 x 103 VIP-GFP hematopoietic stem cells (HSC) and 3 x 106 VIP-wild type (VIP-WT) or VIP-knock out (VIP-KO) splenocytes. At day 7, splenocytes were isolated for flow cytometric analysis looking for GFP signal, which represents VIP-promotor activity. Experiment 2 used combinations of 5 x 103 VIP-WT HSC, 1 x 106 luciferase+ T cells, and 50 x 103 VIP-WT or VIP-KO pDC from B6 as donor grafts. Recipients were monitored for survival and GvHD based on fur texture, posture, activity, skin integrity and weight loss. T cell expansion was measured by bioluminescent imaging (BLI). Serum cytokines from bleeds at day 3 and day 8 post-transplant were analyzed using a Luminex 38 plex panel. Some recipients were euthanized on day 3 for intracellular cytokine analysis of splenic T cells. Results: In experiment 1, 7 days post-transplant, analysis of splenocytes from all mice showed increased activity of the VIP gene promoter in donor pDC that were derived from HSC, compared to other cell types. The VIP promoter signal was also stronger in donor HSC-derived pDCs, if originally transplanted with VIP-KO splenocytes. In experiment 2 over 70% of mice receiving HSC+T+VIP-WT pDC in the BM graft survived to day 100 post-transplant, while those getting VIP-KO pDC instead only had 30% survival (Fig 1A). All surviving recipients were fully engrafted by day 30. BLI revealed greater total T-cell proliferation (measured as radiance) in recipients of VIP-KO pDC (Fig 1B). Furthermore, recipients of VIP-KO pDC had more severe acute GvHD, with increased weight loss and GvHD clinical scores (Fig 1C, 1D). Some recipients were euthanized and their serum were collected for cytokine analysis on day 8 post-transplant, which showed up-regulation of pro-inflammatory or chemotactic cytokines MCP1, IL-1, IL-12, IL-17 in T cells co-transplanted with VIP-KO pDC compared to WT pDC. Conclusion: The present findings show that: 1) VIP is produced by donor pDC early after allo-BMT; 2) absence of VIP production by donor pDC leads to increased T-cell expansion in a murine allo-BMT model. Thus the pDC-T cell VIP signaling pathway is a critical element in controlling donor T cell alloreactivity after allo-BMT. Future studies will include VIP qPCR to confirm VIP production in donor pDC post-transplant, and determine the mechanism by which VIP production by pDC regulates T cell activity and modulates GvHD. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document