scholarly journals Metabolic adaptation is associated with less weight and fat mass loss in response to low-energy diets

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Catia Martins ◽  
Jessica Roekenes ◽  
Barbara A. Gower ◽  
Gary R. Hunter

Abstract Background The practical relevance of metabolic adaptation remains a controversial issue. To the best of our knowledge, no study has properly evaluated the role of metabolic adaptation in modulating weight loss outcomes. Therefore, the aim of this study was to determine the association between metabolic adaptation, at the level of resting metabolic rate (RMR), and weight and fat mass (FM) loss after low-energy diets (LED), after adjusting for dietary adherence and other confounders. Methods 71 individuals with obesity (BMI: 34.6 ± 3.4 kg/m2; age: 45.4 ± 8.2 years; 33 males) were randomized to one of three 1000 kcal/day diets for 8 weeks. Body weight, FM and fat-free mass (FFM) (air displacement plethysmography), RMR (indirect calorimetry) and physical activity level (PAL) (armbands) were measured at baseline and at week 9. Metabolic adaptation at week 9 was defined as measured RMR minus predicted RMR at week 9. An equation to predict RMR was derived from baseline data of all participants that were part of this analysis and included age, sex, FM and FFM as predictors. Dietary adherence was calculated from RMR, PAL and body composition changes. Linear regression was used to assess the potential role of metabolic adaptation in predicting weight and FM loss after adjusting for dietary adherence, average PAL, sex, baseline FM and FFM and randomization group. Results Participants lost on average 14 ± 4 kg of body weight (13 ± 3%) and presented with metabolic adaptation (−92 ± 110 kcal/day, P < 0.001). Metabolic adaptation was a significant predictor of both weight (β = −0.009, P < 0.001) and FM loss (β = −0.008, P < 0.001), even after adjusting for confounders (R2 = 0.88, 0.93, respectively, P < 0.001 for both). On average, an increase in metabolic adaptation of 50 kcal/day was associated with a 0.5 kg lower weight and FM loss in response to the LED. Conclusion In individuals with obesity, metabolic adaptation at the level of RMR is associated with less weight and FM loss in response to LED. Trial registration ID: NCT02944253.

2021 ◽  
Author(s):  
Catia Martins ◽  
Jessica Roekenes ◽  
Barbara Gower ◽  
Gary Hunter

Abstract Background: The practical relevance of metabolic adaptation remains a controversial issue. To the best of our knowledge, no study has properly evaluated the role of metabolic adaptation in modulating weight loss outcomes. Therefore, the aim of this study was to determine the association between metabolic adaptation, at the level of resting metabolic rate (RMR), and weight and fat mass (FM) loss after low-energy diets (LED), after adjusting for dietary adherence and other confounders. Methods: 71 individuals with obesity (BMI: 34.6±3.4 kg/m2; age: 45.4±8.2 years; 33 males) were randomized to one of three 1000 kcal/day diets for 8 weeks. Body weight, FM and fat-free mass (FFM) (air displacement plethysmography), RMR (indirect calorimetry) and physical activity level (PAL) (armbands) were measured at baseline and at week 9. Metabolic adaptation at week 9 was defined as measured – predicted RMR (using own regression model). Dietary adherence was calculated from RMR, PAL and body composition changes. Linear regression was used to assess the potential role of metabolic adaptation in predicting weight and FM loss after adjusting for dietary adherence, average PAL, sex, baseline FM and FFM and randomization group.Results: Participants lost on average 14±4 kg (13±3%) and presented with metabolic adaptation (-92±110 kcal/day, P<0.001). Metabolic adaptation was a significant predictor of both weight and FM loss (β=-0.01, P<0.001 for both), even after adjusting for confounders (R2=0.88, 0.93, respectively, P<0.001 for both). On average, an increase in metabolic adaptation of 50 kcal/day was associated with a 0.5 kg lower weight and FM loss in response to the LED. Conclusion: In individuals with obesity, metabolic adaptation at the level of RMR is associated with less weight and FM loss in response to LED. Trial registration ID: NCT02944253


1993 ◽  
Vol 3 (2) ◽  
pp. 194-206 ◽  
Author(s):  
Janice Thompson ◽  
Melinda M. Manore ◽  
James S. Skinner

The resting metabolic rate (RMR) and thermic effect of a meal (TEM) were determined in 13 low-energy intake (LOW) and 11 adequate-energy intake (ADQ) male endurance athletes. The LOW athletes reported eating 1,490 kcal·day-1less than the ADQ group, while the activity level of both groups was similar. Despite these differences, both groups had a similar fat-free mass (FFM) and had been weight stable for at least 2 years. The RMR was significantly lower (p<0.05) in the LOW group compared to the values of the ADQ group (1.19 vs. 1.29 kcal·FFM-1·hr-l, respectively); this difference represents a lower resting expenditure of 158 kcal·day-1. No differences were found in TEM between the two groups. These results suggest that a lower RMR is one mechanism that contributes to weight maintenance in a group of low- versus adequate-energy intake male athletes.


2021 ◽  
Author(s):  
Catia Martins ◽  
Barbara Gower ◽  
Gary Hunter

Abstract BackgroundThe clinical relevance of metabolic adaptation remains to be fully determined, but its role as a driver of weight regain has been dismissed. It could be hypothesized that metabolic adaptation increases the length of time needed to reach weight loss goals. The aim of this study was, therefore, to determine if metabolic adaptation, at the level of resting metabolic rate (RMR), is associated with time to reach weight loss goals, after adjusting for confounders. Methods65 premenopausal women with overweight (BMI: 28.6±1.5 kg/m2; age: 36.4±5.9 years; 36 Whites and 29 Blacks) followed an 800 kcal/day diet until body mass index ≤25 kg/m2. Body weight and composition (4 compartment model (4CM) and dual x-ray absorptiometry (DXA)) and RMR (indirect calorimetry) were measured at baseline and after weight loss (after a 4-week weight stabilization period). Dietary adherence was calculated from total energy expenditure (TEE) determined by double labeled water measures and DXA body composition changes. Metabolic adaptation was defined as a significantly lower measured vs predicted RMR (from own regression model using 4CM data). A regression model to predict time to reach weight loss goals was developed including baseline body weight, baseline TEE, dietary adherence and metabolic adaptation as predictors. ResultsParticipants lost on average 12.5±3.1 kg (16.1±3.4%) over 155.1±49.2 days. Average dietary adherence was 63.6±31.0%. There was significant metabolic adaptation after weight loss (-46±113 kcal/day, P=0.002) and this variable was a significant predictor of time to reach weight loss goal (β=-0.1, P=0.033), even after adjusting for confounders (R2 adjusted = 0.59, P<0.001). ConclusionIn premenopausal women with overweight, metabolic adaptation after a 16% weight loss increases the length of time necessary to achieve weight loss goals. Trial registration ID (JULIET study)NCT00067873


2009 ◽  
Vol 6 (1) ◽  
pp. 93-98 ◽  
Author(s):  
Julia Aparecida Devide Nogueira ◽  
Teresa Helena Macedo da Costa

Background:Body weight and composition are determined by genotype, environment, and energy balance. Physical activity or sedentary behavior have different associations with body weight, fat mass, and fat-free mass, a relationship that is not clear in adolescents. The aim of this study was to test the associations between gender, physical activity, sedentary behavior, and body composition in physically active adolescents.Methods:Weight, height, and skinfold thickness were measured in 326 physically active boys and girls age 11 to 15 years. All subjects answered a questionnaire assessing their usual daily activities for the last month. Time spent on each activity was used to estimate the physical activity level (PAL).Results:PAL was associated with body composition after adjustment for age and maturation, with differences between genders. For boys, PAL was positively and significantly associated with body mass index (BMI) and fat-free mass index (β= 0.14 and 0.15, respectively). For girls, PAL was negatively and significantly associated with BMI and fat mass index (β= −0.11 and −0.75, respectively). Sedentary behavior, expressed by hours of TV, videogame, and computer use, was not associated with any body-composition outcome for either gender.Conclusion:The accumulated amount of physical activity, but not of sedentary behavior, was related to body composition in active adolescents.


2017 ◽  
Vol 14 (5) ◽  
pp. 389-407 ◽  
Author(s):  
Leon Mabire ◽  
Ramakrishnan Mani ◽  
Lizhou Liu ◽  
Hilda Mulligan ◽  
David Baxter

Background:Brisk walking is the most popular activity for obesity management for adults. We aimed to identify whether participant age, sex and body mass index (BMI) influenced the effectiveness of brisk walking.Methods:A search of 9 databases was conducted for randomized controlled trials (RCTs). Two investigators selected RCTs reporting on change in body weight, BMI, waist circumference, fat mass, fat-free mass, and body fat percentage following a brisk walking intervention in obese adults.Results:Of the 5072 studies screened, 22 met the eligibility criteria. The pooled mean differences were: weight loss, –2.13 kg; BMI, –0.96 kg/m2; waist circumference, –2.83 cm; fat mass, –2.59 kg; fat-free mass, 0.29 kg; and body fat percentage, –1.38%. Meta-regression of baseline BMI showed no effect on changes.Conclusions:Brisk walking can create a clinically significant reduction in body weight, BMI, waist circumference, and fat mass for obese men and women aged under 50 years. Obese women aged over 50 years can achieve modest losses, but gains in fat-free mass reduce overall change in body weight. Further research is required for men aged over 50 years and on the influence of BMI for all ages and sexes.


Sports ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 85 ◽  
Author(s):  
Jennifer Fields ◽  
Justin Merrigan ◽  
Jason White ◽  
Margaret Jones

The purpose of this study was to assess the body composition of male and female basketball athletes (n = 323) across season, year, and sport-position using air displacement plethysmography. An independent sample t-test assessed sport-position differences. An analysis of variance was used to assess within-subjects across season (pre-season, in-season, and off-season), and academic year (freshman, sophomore, and junior). For both men and women basketball (MBB, WBB) athletes, guards had the lowest body fat, fat mass, fat free mass, and body mass. No seasonal differences were observed in MBB, but following in-season play for WBB, a reduction of (p = 0.03) in fat free mass (FFM) was observed. Across years, MBB showed an increase in FFM from freshman to sophomore year, yet remained unchanged through junior year. For WBB across years, no differences occurred for body mass (BM), body fat (BF%), and fat mass (FM), yet FFM increased from sophomore to junior year (p = 0.009). Sport-position differences exist in MBB and WBB: Guards were found to be smaller and leaner than forwards. Due to the importance of body composition (BC) on athletic performance, along with seasonal and longitudinal shifts in BC, strength and conditioning practitioners should periodically assess athletes BC to ensure preservation of FFM. Training and nutrition programming can then be adjusted in response to changes in BC.


1995 ◽  
Vol 79 (3) ◽  
pp. 818-823 ◽  
Author(s):  
A. S. Ryan ◽  
R. E. Pratley ◽  
D. Elahi ◽  
A. P. Goldberg

Percent body fat increases with age and is often accompanied by a loss in muscle mass, strength, and energy expenditure. The effects of 16 wk of resistive training (RT) alone or with weight loss (RTWL) on strength (isokinetic dynamometer), body composition (dual-energy X-ray absorptiometry), resting metabolic rate (RMR) (indirect calorimetry), and sympathetic nervous system activity (catecholamines) were examined in 15 postmenopausal women (50–69 yr). RT resulted in significant improvements in upper and lower body strength in both groups (P < 0.01). The nonobese women in the RT group (n = 8) did not change their body weight or fat mass with training. In the obese RTWL group (n = 7), body weight, fat mass, and percent body fat were significantly decreased (P < 0.001). Fat-free mass and RMR significantly increased with training in both groups combined (P < 0.05). There were no significant changes in resting arterialized plasma norepinephrine or epinephrine levels in either group with training. RT increases strength with and without weight loss. Furthermore, RT and RTWL increase fat-free mass and RMR and decrease percent fat in postmenopausal women. Thus, RT may be a valuable component of an integrated weight management program in postmenopausal women.


1994 ◽  
Vol 77 (2) ◽  
pp. 933-940 ◽  
Author(s):  
K. E. Friedl ◽  
R. J. Moore ◽  
L. E. Martinez-Lopez ◽  
J. A. Vogel ◽  
E. W. Askew ◽  
...  

We examined body composition changes in 55 normal young men during an 8-wk Army combat leadership training course involving strenuous exercise and low energy intake, with an estimated energy deficit of 5.0 +/- 2.0 MJ/day and a resultant 15.7 +/- 3.1% weight loss. Percent body fat (BF) measured by dual-energy X-ray absorptiometry (DEXA) averaged 14.3% (range 6–26%) and 5.8 +/- 1.8% (range 4–11%) at the beginning and end of the course, respectively. Men who achieved a minimum percent BF (4–6%) by 6 wk demonstrated only small additional total and subcutaneous fat losses in the final 2 wk and sacrificed increasingly larger proportions of fat-free mass. Percent BF estimated from skinfold thicknesses reflected relative changes in fat mass, although actual percent BF was overestimated. Instead of reaching a plateau after fat stores were substantially depleted, abdominal, hip, and thigh girths continued to decline with body weight loss. Final percent BF for the leanest men was similar to that observed after a 25% body weight reduction in the 1950 Minnesota study (5.2% by underwater weighting), and height-corrected final fat mass was the same (1.0 +/- 0.2 vs. 0.9 +/- 0.7 kg fat/m2), suggesting that these values represent a minimal body fat content in healthy men and that weight loss subsequent to achieving this level is contributed from the fat-free mass. Our results suggest that 4–6% BF or approximately 2.5 kg fat represents the lower limit for healthy men, as assessed by DEXA or by underwater weighing.


1991 ◽  
Vol 261 (6) ◽  
pp. E789-E794 ◽  
Author(s):  
M. F. Saad ◽  
S. A. Alger ◽  
F. Zurlo ◽  
J. B. Young ◽  
C. Bogardus ◽  
...  

The impact of sympathetic nervous system (SNS) activity on energy expenditure (EE) was evaluated in nondiabetic Caucasian and Pima Indian men while on a weight-maintenance diet using two approaches as follows. 1) The relationship between 24-h EE, measured in a respiratory chamber, and 24-h urinary norepinephrine was studied in 36 Caucasians [32 +/- 8 (SD) yr, 95 +/- 41 kg, 22 +/- 13% fat] and 33 Pimas (29 +/- 6 yr, 103 +/- 28 kg, 30 +/- 9% fat). There was no difference between the two groups in 24-h EE (2,422 vs. 2,523 kcal/24 h) and in urinary norepinephrine (28 vs. 31 micrograms/24 h), even after adjusting for body size and composition. Twenty-four-hour EE correlated significantly with 24-h urinary norepinephrine in Caucasians (r = 0.78, P less than 0.001) but not in Pimas (r = 0.03), independent of fat-free mass (FFM), fat mass, and age. 2) The effect of beta-adrenoceptor blockade with propranolol (120 micrograms/kg FFM bolus and 1.2 micrograms.kg FFM-1.min-1 for 45 min) on the resting metabolic rate (RMR) was evaluated in 36 Caucasians (30 +/- 6 yr, 103 +/- 36 kg, 25 +/- 11% fat) and 32 Pimas (28 +/- 6 yr, 100 +/- 34 kg, 27 +/- 10% fat). The RMR was similar in the two groups (2,052 vs. 1,973 kcal/24 h) even after adjustment for FFM, fat mass, and age and dropped significantly after propranolol infusion in Caucasians (-3.9%, P less than 0.001) but not in Pimas (-0.8%, P = 0.07).(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document