scholarly journals Associations between serum calcium, 25(OH)D level and bone mineral density in older adults

Author(s):  
Minbo Liu ◽  
Xiaocong Yao ◽  
Zhongxin Zhu

Abstract Background Calcium and vitamin D play important roles in bone health as essential nutrients. We explored whether serum calcium, 25(OH)D were associated with bone mineral density (BMD) in older adults. Methods This cross-sectional study was conducted on a sample of 4595 participants (2281 men and 2314 women) aged ≥ 50 years (from 50 to 85 years, 60.1 ± 8.7 years for men and 62.0 ± 9.7 years for women) from the National Health and Nutrition Examination Survey (NHANES) 2001–2006. The independent variables were serum calcium and 25(OH)D. The dependent variable was lumbar BMD. The other variables were considered potential effect modifiers. We performed weighted multivariate linear regression models and smooth curve fittings to evaluate the associations between them. Subgroup analyses were also performed. Results We observed a negative association between serum calcium and lumbar BMD in the fully adjusted model. In the subgroup analyses, this association was no longer significant among males and other race/ethnicity. On the other hand, there was a positive association between serum 25(OH)D and lumbar BMD in the fully adjusted model. In the subgroup analyses, this association did not differ in different age groups, between men and women. However, the association between serum 25(OH)D and lumbar BMD followed a U-shaped curve in Mexican Americans. Conclusions This cross-sectional study indicated that serum calcium negatively correlated with lumbar BMD, and serum 25(OH)D positively correlated with lumbar BMD in older adults. However, the association between serum calcium and lumbar BMD in males followed a U-shaped curve.

2021 ◽  
Vol 8 ◽  
Author(s):  
Ming Ma ◽  
Zhiwei Feng ◽  
Xiaolong Liu ◽  
Gengxin Jia ◽  
Bin Geng ◽  
...  

Background: Previous studies had revealed that Body Mass Index (BMI) positively affected Bone Mineral Density (BMD). However, an excessively high BMI was detrimental to health, especially for the elderly. Moreover, it was elusive how much BMI was most beneficial for BMD in older adults to maintain.Objective: To investigate whether there was a BMI saturation effect value that existed to maintain optimal BMD.Methods: A cross-sectional study was conducted using the datasets of the National Health and Nutrition Examination Survey (NHANES) 2005–2006, 2007–2008, 2009–2010, 2013–2014, and 2017–2018. After adjusting for covariates, an analysis of the association between BMI and BMD in different femoral regions (Total femur, Femoral neck, Trochanter, Intertrochanter, and Ward's triangle) and lumbar spine regions (Total spine, L1, L2, L3, and L4) in the whole population was performed using the multivariate linear regression models, smoothing curve fitting, and saturation effects analysis models. Then, subgroup analyses were performed according to gender, age, and race.Results: A total of 10,910 participants (5,654 males and 5,256 females) over 50 years were enrolled in this population-based study. Multivariate linear regression analyses in the population older than 50 years showed that BMI was positively associated with femoral BMD and lumbar spine BMD (P < 0.001, respectively). Smoothing curve fitting showed that the relationship between BMI and BMD was not simply linear and that a saturation value existed. The saturation effect analysis showed that the BMI saturation value was 26.13 (kg/m2) in the total femur, 26.82 (kg/m2) in the total spine, and showed site-specificity in L1 (31.90 kg/m2) and L2 (30.89 kg/m2). The saturation values were consistent with the whole participants in males, while there was high variability in the females. BMI saturation values remained present in subgroup analyses by age and race, showing specificity in some age (60–70 years old) groups and in some races.Conclusions: Our study showed a saturation value association between BMI and BMD for people over 50 years old. Keeping the BMI in the slightly overweight value (around 26 kg/m2) might reduce other adverse effects while obtaining optimal BMD.


2017 ◽  
Vol 135 (3) ◽  
pp. 253-259 ◽  
Author(s):  
Ricardo Ribeiro Agostinete ◽  
Igor Hideki Ito ◽  
Han Kemper ◽  
Carlos Marcelo Pastre ◽  
Mário Antônio Rodrigues-Júnior ◽  
...  

ABSTRACT CONTEXT AND OBJECTIVE: Peak height velocity (PHV) is an important maturational event during adolescence that affects skeleton size. The objective here was to compare bone variables in adolescents who practiced different types of sports, and to identify whether differences in bone variables attributed to sports practice were dependent on somatic maturation status. DESIGN AND SETTING: Cross-sectional study, São Paulo State University (UNESP). METHODS: The study was composed of 93 adolescents (12 to 16.5 years old), divided into three groups: no-sport group (n = 42), soccer/basketball group (n = 26) and swimming group (n = 25). Bone mineral density and content were measured using dual-energy x-ray absorptiometry and somatic maturation was estimated through using peak height velocity. Data on training load were provided by the coaches. RESULTS: Adolescents whose PHV occurred at an older age presented higher bone mineral density in their upper limbs (P = 0.018). After adjustments for confounders, such as somatic maturation, the swimmers presented lower values for bone mineral density in their lower limbs, spine and whole body. Only the bone mineral density in the upper limbs was similar between the groups. There was a negative relationship between whole-body bone mineral content and the weekly training hours (β: -1563.967; 95% confidence interval, CI: -2916.484 to -211.450). CONCLUSION: The differences in bone variables attributed to sport practice occurred independently of maturation, while high training load in situations of hypogravity seemed to be related to lower bone mass in swimmers.


Sign in / Sign up

Export Citation Format

Share Document