scholarly journals Circular RNA circ_0081001 knockdown enhances methotrexate sensitivity in osteosarcoma cells by regulating miR-494-3p/TGM2 axis

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Wei Wei ◽  
Liefeng Ji ◽  
Wanli Duan ◽  
Jiang Zhu

Abstract Background Circular RNAs (circRNAs) have been shown to participate in the chemoresistance and tumorigenesis of multiple cancers. The purpose of this research was to investigate the function of circ_0081001 in methotrexate (MTX) resistance of osteosarcoma (OS) and its potential molecular mechanism. Methods The expression of circ_0081001, cytochrome P450 family 51 subfamily A member 1 (CYP51A1), and miR-494-3p was detected by qRT-PCR. Cell viability, apoptosis, migration, and invasion were evaluated by Cell Counting Kit-8 (CCK-8) assay, flow cytometry, and transwell assay, respectively. Western blot (WB) assay was used to measure the protein levels of cleaved-caspase3 (cleaved-casp3), E-cadherin, N-cadherin, and transglutaminase-2 (TGM2). The interaction between miR-494-3p and circ_0081001 or TGM2 was predicted by bioinformatics analysis and verified using the dual-luciferase reporter assay. The mice xenograft model was established to investigate the roles of circ_0081001 in MTX resistance of OS in vivo. Results Circ_0081001 and TGM2 were upregulated, and miR-494-3p was downregulated in MTX-resistant OS tissues and cells. Moreover, circ_0081001 interference enhanced cell sensitivity to MTX through promoting apoptosis and inhibiting cell viability and metastasis in vitro. Furthermore, circ_0081001 was identified as a molecular sponge of miR-494-3p to upregulate TGM2 level. In addition, circ_0081001 knockdown inhibited MTX resistance via upregulating miR-494-3p and downregulating TGM2. Besides, circ_0081001 downregulation improved MTX sensitivity of OS in vivo. Conclusion Knockdown of circ_0081001 enhanced MTX sensitivity of OS cells through downregulating TGM2 by sponging miR-494-3p, elucidating a novel regulatory mechanism for chemoresistance of OS and providing a potential circRNA-targeted therapy for OS.

2020 ◽  
Vol 15 (1) ◽  
pp. 848-859
Author(s):  
Wei Wei ◽  
Liefeng Ji ◽  
Wanli Duan ◽  
Jiang Zhu

AbstractCircular RNA sterile alpha motif domain containing 4A (circSAMD4A) was found to be differentially expressed in osteosarcoma and contributed to the tumorigenesis of osteosarcoma. However, the role of circSAMD4A in doxorubicin (DXR) resistance of osteosarcoma is yet to be elucidated. Levels of circSAMD4A, microRNA (miR)-218-5p and Krüppel-like factor 8 (KLF8) were detected using quantitative reverse transcription-polymerase chain reaction. Western blot was applied to detect the protein levels of KLF8, cyclin D1 and p21. Cell viability, cell cycle, migration and invasion were analyzed using Cell Counting Kit-8 assay, flow cytometry and transwell assay, respectively. The interaction between miR-218-5p and circSAMD4A or KLF8 was verified using dual-luciferase reporter assay or RNA immunoprecipitation assay. In vivo experiments were performed using murine xenograft models. CircSAMD4A and KLF8 were elevated in osteosarcoma, and knockdown of circSAMD4A or KLF8 sensitized osteosarcoma cells to DXR by mediating resistant cell viability, migration and invasion inhibition, and cell cycle arrest in vitro. miR-218-5p was decreased in osteosarcoma, and miR-218-5p inhibition enhanced DXR resistance. Besides, miR-218-5p was found to bind to circSAMD4A or KLF8, and subsequent rescue experiments indicated that miR-218-5p inhibition reversed the inhibitory effects of circSAMD4A silencing on DXR resistance, and silencing miR-218-5p enhanced DXR resistance by targeting KLF8 in osteosarcoma cells. Moreover, circSAMD4A could indirectly regulate KLF8 via miR-218-5p. Additionally, circSAMD4A knockdown enhanced the cytotoxicity of DXR in osteosarcoma in vivo via regulating miR-218-5p and KLF8. In all, circSAMD4A enhanced cell DXR resistance in osteosarcoma by regulating the miR-218-5p/KLF8 axis, suggesting a novel therapeutic target for therapy-resistant osteosarcoma.


Author(s):  
Chenyu Ding ◽  
Xuehan Yi ◽  
Xiangrong Chen ◽  
Zanyi Wu ◽  
Honghai You ◽  
...  

Abstract Background Temozolomide (TMZ) resistance limits its application in glioma. Exosome can carry circular RNAs (circRNAs) to regulate drug resistance via sponging microRNAs (miRNAs). miRNAs can control mRNA expression by regulate the interaction with 3’UTR and methylation. Nanog homeobox (NANOG) is an important biomarker for TMZ resistance. Hitherto, it is unknown about the role of exosomal hsa_circ_0072083 (circ_0072083) in TMZ resistance in glioma, and whether it is associated with NANOG via regulating miRNA sponge and methylation. Methods TMZ-resistant (n = 36) and sensitive (n = 33) patients were recruited. The sensitive cells and constructed resistant cells were cultured and exposed to TMZ. circ_0072083, miR-1252-5p, AlkB homolog H5 (ALKBH5) and NANOG levels were examined via quantitative reverse transcription polymerase chain reaction and western blot. The half maximal inhibitory concentration (IC50) of TMZ, cell proliferation, apoptosis, migration and invasion were analyzed via Cell Counting Kit-8, colony formation, flow cytometry, wound healing and transwell assays. The in vivo function was assessed using xenograft model. The N6-methyladenosine (m6A) level was analyzed via methylated RNA immunoprecipitation (MeRIP). Target relationship was investigated via dual-luciferase reporter assay and RNA immunoprecipitation. Warburg effect was investigated via lactate production, glucose uptake and key enzymes expression. Exosome was isolated and confirmed via transmission electron microscopy and specific protein expression. Results circ_0072083 expression was increased in TMZ-resistant glioma tissues and cells. circ_0072083 knockdown restrained the resistance of resistant cells via decreasing IC50 of TMZ, proliferation, migration, invasion and xenograft tumor growth and increasing apoptosis. circ_0072083 silence reduced NANOG expression via blocking ALKBH5-mediated demethylation. circ_0072083 could regulate NANOG and ALKBH5 via targeting miR-1252-5p to control TMZ resistance. Warburg effect promoted the release of exosomal circ_0072083 in resistant cells. Exosomal circ_0072083 from resistant cells increased the resistance of sensitive cells to TMZ in vitro and xenograft model. Exosomal circ_0072083 level was enhanced in resistant patients, and it had a diagnostic value and indicated a lower overall survival in glioma. Conclusion Exosomal circ_0072083 promoted TMZ resistance via increasing NANOG via regulating miR-1252-5p-mediated degradation and demethylation in glioma.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ruirui Zhang ◽  
Huanyu Zhao ◽  
Hongmei Yuan ◽  
Jian Wu ◽  
Haiyan Liu ◽  
...  

Background: Chemoresistance is a major barrier to the treatment of human cancers. Circular RNAs (circRNAs) are implicated in drug resistance in cancers, including gastric cancer (GC). In this study, we aimed to explore the functions of circRNA Armadillo Repeat gene deleted in Velo-Cardio-Facial syndrome (circARVCF) in cisplatin (DDP) resistance in GC.Methods: The expression of circARVCF, microRNA-1205 (miR-1205) and fibroblast growth factor receptor 1 (FGFR1) was detected by quantitative real-time polymerase chain reaction (qRT-PCR), western blot assay or immunohistochemistry (IHC) assay. Cell Counting Kit-8 (CCK-8) assay and colony formation assay were performed to evaluate DDP resistance and cell colony formation ability. Transwell assay was conducted to assess cell migration and invasion. Flow cytometry analysis was done to analyze cell apoptosis. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were manipulated to analyze the relationships of circARVCF, miR-1205 and FGFR1. Murine xenograft model was constructed to explore DDP resistance in vivo.Results: CircARVCF level was increased in DDP-resistant GC tissues and cells. CircARVCF silencing inhibited DDP resistance, colony formation and metastasis and induced apoptosis in DDP-resistant GC cells. CircARVCF directly interacted with miR-1205 and miR-1205 inhibition reversed circARVCF silencing-mediated effect on DDP resistance in DDP-resistant GC cells. FGFR1 served as the target gene of miR-1205. MiR-1205 overexpression restrained the resistance of DDP-resistant GC cells to DDP, but FGFR1 elevation abated the effect. In addition, circARVCF knockdown repressed DDP resistance in vivo.Conclusion: CircARVCF enhanced DDP resistance in GC by elevating FGFR1 through sponging miR-1205.


Author(s):  
Xuhui Fan ◽  
Meng Liu ◽  
Li Fei ◽  
Zhihui Huang ◽  
Yufeng Yan

Circular RNA (circRNA) is a key regulator of tumor progression. However, the role of circFOXM1 in glioblastoma (GBM) progression is unclear. The aim of this study was to investigate the role of circFOXM1 in GBM progression. The expression levels of circFOXM1, miR-577 and E2F transcription factor 5 (E2F5) were examined by real-time quantitative PCR. Cell counting kit 8 assay, EdU staining and transwell assay were used to detect cell proliferation, migration, and invasion. The levels of glutamine, glutamate and α-ketoglutarate were determined to evaluate the glutaminolysis ability of cells. Protein expression was tested by western blot analysis. Dual-luciferase reporter assay, RNA pull-down assay and RNA immunoprecipitation assay were employed to verify the interaction between miR-577 and circFOXM1 or E2F5. Mice xenograft model for GBM was constructed to perform in vivo experiments. Our results showed that circFOXM1 was highly expressed in GBM tumor tissues and cells. Silencing of circFOXM1 inhibited GBM cell proliferation, migration, invasion, glutaminolysis, as well as tumor growth. MiR-577 could be sponged by circFOXM1, and its inhibitor could reverse the suppressive effect of circFOXM1 downregulation on GBM progression. E2F5 was a target of miR-577, and the effect of its knockdown on GBM progression was consistent with that of circFOXM1 silencing. CircFOXM1 positively regulated E2F5 expression, while miR-577 negatively regulated E2F5 expression. In conclusion, our data confirmed that circFOXM1 could serve as a sponge of miR-577 to enhance the progression of GBM by targeting E2F5, which revealed that circFOXM1 might be a biomarker for GBM treatment.


Author(s):  
Guangli Sun ◽  
Zheng Li ◽  
Zhongyuan He ◽  
Weizhi Wang ◽  
Sen Wang ◽  
...  

Abstract Background Cisplatin (CDDP) is the first-line chemotherapy for gastric cancer (GC). The poor prognosis of GC patients is partially due to the development of CDDP resistance. Circular RNAs (circRNAs) are a subclass of noncoding RNAs that function as microRNA (miRNA) sponges. The role of circRNAs in CDDP resistance in GC has not been evaluated. Methods RNA sequencing was used to identify the differentially expressed circRNAs between CDDP-resistant and CDDP-sensitive GC cells. qRT-PCR was used to detect the expression of circMCTP2 in GC tissues. The effects of circMCTP2 on CDDP resistance were investigated in vitro and in vivo. Pull-down assays and luciferase reporter assays were performed to confirm the interactions among circMCTP2, miR-99a-5p, and myotubularin-related protein 3 (MTMR3). The protein expression levels of MTMR3 were detected by western blotting. Autophagy was evaluated by confocal microscopy and transmission electron microscopy (TEM). Results CircMCTP2 was downregulated in CDDP-resistant GC cells and tissues compared to CDDP-sensitive GC cells and tissues. A high level of circMCTP2 was found to be a favorable factor for the prognosis of patients with GC. CircMCTP2 inhibited proliferation while promoting apoptosis of CDDP-resistant GC cells in response to CDDP treatment. CircMCTP2 was also found to reduce autophagy in CDDP-resistant GC cells. MiR-99a-5p was verified to be sponged by circMCTP2. Inhibition of miR-99a-5p could sensitize GC cells to CDDP. MTMR3 was confirmed to be a direct target of miR-99a-5p. Knockdown of MTMR3 reversed the effects of circMCTP2 on the proliferation, apoptosis and autophagy of CDDP-resistant GC cells. CircMCTP2 was also confirmed to inhibit CDDP resistance in vivo in a nude mouse xenograft model. Conclusions CircMCTP2 sensitizes GC to CDDP through the upregulation of MTMR3 by sponging miR-99a-5p. Overexpression of CircMCTP2 could be a new therapeutic strategy for counteracting CDDP resistance in GC.


2020 ◽  
Author(s):  
Weisheng Guo ◽  
Lin Zhao ◽  
Yaguang Wei ◽  
Peng Liu ◽  
Yu Zhang ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) is the leading threat of cancer-related death in humans with poor therapeutic effects. Circular RNAs (circRNAs) are important indicators in cancer diagnosis and prognosis. This study intended to explore the function and mechanism of circ_0015756 in HCC, providing the additional opinion for HCC treatment.Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to detect the expression of circ_0015756 and miR-610. Cell viability was assessed by cell counting kit-8 (CCK-8) assay, and colony formation capacity was ascertained by colony formation assay. Cell proliferation and invasion were monitored by transwell assay. Cell cycle progression and apoptosis were analyzed by flow cytometry assay. Circ_0015756 oncogenicity was determined by Xenograft models. The prediction of targets was performed using the bioinformatics tools, and the verification of targeted relationship was conducted using RNA pull-down, RNA immunoprecipitation (RIP) and dual-luciferase reporter assays. The expression level of fibroblast growth factor receptor 1 (FGFR1) was measured by western blot.Result: The expression of circ_0015756 was increased in HCC tissues, serums and cells. Circ_0015756 downregulation impaired HCC cell viability, colony formation capacity, invasion and migration, induced cell cycle arrest and apoptosis, and inhibited tumor growth in vivo. MiR-610 was ensured as a target of circ_0015756, and miR-610 absence reversed the effects of circ_0015756 downregulation. Further, FGFR1 was interacted by miR-610, and FGFR1 overexpression overturned the effects of miR-610 restoration in vitro. Circ_0015756 could regulate FGFR1 expression by targeting miR-610.Conclusion: Circ_0015756 played its tumorigenic properties in HCC by activating FGFR1 and sponging miR-610, and circ_0015756 was expected to be a vital indicator in HCC diagnosis and treatment.


2020 ◽  
Author(s):  
Shuo Yu ◽  
Min Wang ◽  
Xu Li ◽  
Xingjun Guo ◽  
Renyi Qin

Abstract Background: Circular RNAs (circRNAs) are engaged in hepatocellular carcinoma (HCC) progression, but the mechanisms remain to be elucidated. This study aimed to unveil the expression pattern and potential biological mechanisms of a newly indentified circRNA, circ-PAN3, in HCC. Methods: Cell Counting Kit-8 (CCK‐8) assay and colony formation assay were used to assess cell proliferation. Transcription-quantitative PCR (RT-qPCR) analysis and western blot analysis were used to determine the relative expression level of mRNA and protein, respectively. Cell apoptosis assay was used to evaluate the apoptosis rate of transfected cells. CircInteractome and Targetscan were utilized to predict the possible targets of circRNAs and miRNAs, respectively. Luciferase reporter assay and RNA pull-down assay were used to assess the direct interaction of RNAs. HCC cancer xenograft model was used to evaluate the biological process of circ-PAN3 in vivo. Student’s t test, χ2 test or one-way ANOVA was adopted appropriately.Results: Circ-PAN3 was elevated in HCC tissues, and patients with high Circ-PAN3 expression had a poor survival outcome. Knockdown of circ-PAN3 expression suppressed cell viability, colony formation and cell proliferation in vitro and in vivo. Circ-PAN3 elevates cyclin D1 expression to promote HCC progression. Subsequently, using CircInteractome, miR-153 were confirmed to interact with circ-PAN3 and was downregulated by circ-PAN3. Further, using Targetscan, cyclin D1 was validated to interact with miR-153 and was downregulated by miR-153. Addition of miR-153 expression with corresponsive mimics significantly reduced the expression of cyclin D1. Notably, the inhibition of cell viability, colony formation and proliferation induced by knockdown of circ-PAN3 were recovered following the combination with miR-153 inhibitor, cyclin D1, respectively. Conclusion: Together, this study demonstrated that a novel circ-PAN3/miR-153/cyclin D1 axis regulatory axis that promoted HCC progression.


2021 ◽  
Author(s):  
Wei Zhu ◽  
Xiangming Xiao ◽  
Jinqin Chen

Abstract Background: To date, long intergenic nonprotein coding RNA 1132 (LINC01132) expression in epithelial ovarian cancer (EOC) and the underlying mechanisms have not been explored. In this study, we measured LINC01132 expression in EOC and assessed the effects of LINC01132 on the malignant behaviours of EOC cells in vitro and in vivo. Additionally, mechanistic studies were performed to elucidate the molecular events that occurred downstream of LINC01132 in EOC cells. Methods: Reverse-transcription quantitative PCR (RT-qPCR) was utilized to verify LINC01132 expression in EOC. The effects of LINC01132 on the malignant behaviours of EOC cells were determined using a Cell Counting Kit-8 assay, flow cytometry analysis, cell migration and invasion assays and a tumour xenograft model. The targeting interaction among LINC01132, microRNA-431-5p (miR-431-5p) and SRY-Box 9 (SOX9) was verified by RNA immunoprecipitation and luciferase reporter assays. Results: LINC01132 was overexpressed in EOC and was obviously associated with poor patient prognosis. Functionally, cell experiments revealed that LINC01132 depletion could inhibit EOC cell proliferation, migration and invasion and promote cell apoptosis in vitro. Additionally, loss of LINC01132 attenuated tumour growth in vivo. Mechanistically, LINC01132 acted as a competing endogenous RNA by sequestering miR-431-5p and thereby increasing SOX9 expression in EOC cells, forming a LINC01132/miR-431-5p/SOX9 axis. In rescue experiments, miR-431-5p inhibition or SOX9 re-expression eliminated the inhibitory effects of LINC01132 silencing on the pathological behaviours of EOC cells. Conclusions: Generally, LINC01132 exhibited oncogenic activities in EOC cells in vitro and in vivo by regulating the outcome of the miR-431-5p/SOX9 axis, providing an effective target for EOC diagnosis, therapy and prognosis evaluation.


Author(s):  
Chenyu Ding ◽  
Zanyi Wu ◽  
Honghai You ◽  
Hongliang Ge ◽  
Shufa Zheng ◽  
...  

Abstract Background Circular RNA nuclear factor I X (circNFIX) has been reported to play an important role in glioma progression. However, the mechanism by which circNFIX participates in glioma progression remains poorly understood. Methods GERIA online were used to analyze the abnormally expressed genes in glioma tissues. The expression levels of circNFIX, microRNA (miR)-378e and Ribophorin-II (RPN2) were measured by quantitative real-time polymerase chain reaction or western blot. Cell cycle distribution, apoptosis, glycolysis, migration and invasion were determined by flow cytometry, special kit and trans-well assays, respectively. The target association between miR-378e and circNFIX or RPN2 was confirmed by luciferase reporter assay, RNA immunoprecipitation and pull-down. Xenograft model was established to investigate the role of circNFIX in vivo. Results The expression of circNFIX was enhanced in glioma tissues and cells compared with matched controls and high expression of circNFIX indicated poor outcomes of patients. Knockdown of circNFIX led to arrest of cell cycle, inhibition of glycolysis, migration and invasion and promotion of apoptosis in glioma cells. circNFIX was a sponge of miR-378e. miR-378e overexpression suppressed cell cycle process, glycolysis, migration and invasion but promoted apoptosis. miR-378e silence abated the suppressive role of circNFIX knockdown in glioma progression. RPN2 as a target of miR-378e was positively regulated via circNFIX by competitively sponging miR-378e. Silencing circNFIX decreased glioma xenograft tumor growth by regulating miR-378e/RPN2 axis. Conclusion Knockdown of circNFIX inhibits progression of glioma in vitro and in vivo by increasing miR-378e and decreasing RPN2, providing a novel mechanism for understanding the pathogenesis of glioma.


Author(s):  
Zhipeng Jiang ◽  
Qinwen Tai ◽  
Xiaojun Xie ◽  
Zehui Hou ◽  
Wei Liu ◽  
...  

Abstract Background Colorectal cancer (CRC) is a common malignant tumor. Circular RNAs (circRNAs) have been reported to take part in the progression of CRC. However, the functions of circ_0084615 in CRC development are still undefined. In this study, we aimed to explore the functions and underlying mechanisms of circ_0084615 in CRC. Methods qRT-PCR, western blot assay and IHC assay were utilized for the levels of circ_0084615, miR-599, ONECUT2 or EIF4A3. 5-ethynyl-2’-deoxyuridine (EdU) assay and colony formation assay were conducted for cell proliferation ability. Wound-healing assay and transwell assay were applied to evaluate cell migration and invasion. Tube formation assay was used to analyze angiogenesis ability. RNA immunoprecipitation (RIP) assay, RNA pull down assay and dual-luciferase reporter assay were used to analyze the relationships of circ_0084615, miR-599, ONECUT2 and EIF4A3. Murine xenograft model assay was employed for the role of circ_0084615 in vivo. Results Circ_0084615 was elevated in CRC tissues and was linked to TNM stages, lymph node metastasis, differentiation and overall survival rate. Circ_0084615 knockdown inhibited CRC cell proliferation, migration, invasion and angiogenesis in vitro and hampered tumorigenesis in vivo. Circ_0084615 sponged miR-599 and miR-599 inhibition reversed circ_0084615 knockdown-mediated effects on CRC cell growth, motility and angiogenesis. ONECUT2 was identified as the target gene of miR-599. ONECUT2 overexpression recovered the effects of miR-599 on CRC malignant behaviors. Additionally, EIF4A3 induced circ_0084615 expression. Conclusions EIF4A3-induced circ_0084615 played an oncogenic role in CRC development via miR-599/ONECUT2 axis.


Sign in / Sign up

Export Citation Format

Share Document