scholarly journals Protective effects of low-magnitude high-frequency vibration on high glucose-induced osteoblast dysfunction and bone loss in diabetic rats

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Zhaoyu Fu ◽  
Xu Huang ◽  
Pengcheng Zhou ◽  
Bo Wu ◽  
Long Cheng ◽  
...  

Abstract Objective Low-magnitude high-frequency vibration (LMHFV) has been reported to be capable of promoting osteoblast proliferation and differentiation. Reduced osteoblast activity and impaired bone formation were related to diabetic bone loss. We investigated the potential protective effects of LMHFV on high-glucose (HG)-induced osteoblasts in this study. In addition, the assessment of LMHFV treatment for bone loss attributed to diabetes was also performed in vivo. Method MC3T3-E1 cells induced by HG only or treated with LMHFV were treated in vitro. The experiments performed in this study included the detection of cell proliferation, migration and differentiation, as well as protein expression. Diabetic bone loss induced by streptozotocin (STZ) in rats was established. Combined with bone morphometric, microstructure, biomechanical properties and matrix composition tests, the potential of LMHFV in treating diabetes bone loss was explored. Results After the application of LMHFV, the inhibiting effects of HG on the proliferation, migration and differentiation of osteoblasts were alleviated. The GSK3β/β-catenin pathway was involved in the protective effect of LMHFV. Impaired microstructure and biomechanical properties attributed to diabetes were ameliorated by LMHFV treatment. The improvement of femur biomechanical properties might be associated with the alteration of the matrix composition by the LMHFV. Conclusion LMHFV exhibited a protective effect on osteoblasts against HG by regulating the proliferation, migration and differentiation of osteoblasts. The function of promoting bone formation and reinforcing bone strength made it possible for LMHFV to alleviate diabetic bone loss.

2009 ◽  
Vol 106 (2) ◽  
pp. 306-316 ◽  
Author(s):  
Mamta J. Patel ◽  
Kyungh Hwa Chang ◽  
Michelle C. Sykes ◽  
Roger Talish ◽  
Clinton Rubin ◽  
...  

2016 ◽  
Vol 44 (8) ◽  
pp. 2489-2504 ◽  
Author(s):  
Jiazi Gao ◽  
He Gong ◽  
Xu Huang ◽  
Rui Zhang ◽  
Renshi Ma ◽  
...  

2020 ◽  
Vol 318 (1) ◽  
pp. C73-C82 ◽  
Author(s):  
Yan-Hui Li ◽  
Dong Zhu ◽  
Zongbing Cao ◽  
Yanwei Liu ◽  
Jian Sun ◽  
...  

Our objective was to investigate the role of primary cilia in low-magnitude, high-frequency vibration (LMHFV) treatment of MC3T3-E1 osteoblasts (OBs). We used chloral hydrate (CH), which has a well-characterized function in chemically removing primary cilia, to elucidate the role of primary cilia in LMHFV-induced OB osteogenic responses through cell viability assay, Western blot analysis, real-time quantitative RT-PCR, and histochemical staining methods. We observed a significant, 30% decrease in the number of MC3T3-E1 OBs with primary cilia (reduced from 64.3 ± 5%) and an approximately 50% reduction in length of primary cilia (reduced from 3 ± 0.8 μm) after LMHFV stimulation. LMHFV stimulation upregulated protein expression of the bone matrix markers collagen 1 (COL-1), osteopontin (OPN), and osteoclacin(OCN) in MC3T3-E1 OBs, indicating that LMHFV induces osteogenesis. High-concentration or long-duration CH exposure resulted in inhibition of MC3T3-E1 OB survival. In addition, Western blot analysis and RT-PCR revealed that CH treatment prevented LMHFV-induced osteogenesis. Furthermore, decreased alkaline phosphate activity, reduced OB differentiation, mineralization, and maturation were observed in CH-pretreated and LMHFV-treated OBs. We showed that LMHFV induces morphological changes in primary cilia that may fine-tune their mechanosensitivity. In addition, we demonstrated the significant inhibition by CH of LMHFV-induced OB mineralization, maturation, and differentiation, which might reveal the critical role of primary cilia in the process.


2010 ◽  
Vol 29 (5) ◽  
pp. 746-752 ◽  
Author(s):  
Dick Ho-Kiu Chow ◽  
Kwok-Sui Leung ◽  
Ling Qin ◽  
Andraay Hon-Chi Leung ◽  
Wing-Hoi Cheung

Sign in / Sign up

Export Citation Format

Share Document