scholarly journals ASC-J9® suppresses prostate cancer cell proliferation and invasion via altering the ATF3-PTK2 signaling

Author(s):  
Hao Tian ◽  
Fu-ju Chou ◽  
Jing Tian ◽  
Yong Zhang ◽  
Bosen You ◽  
...  

Abstract Background Early studies indicated that ASC-J9®, an androgen receptor (AR) degradation enhancer, could suppress the prostate cancer (PCa) progression. Here we found ASC-J9® could also suppress the PCa progression via an AR-independent mechanism, which might involve modulating the tumor suppressor ATF3 expression. Methods The lentiviral system was used to modify gene expression in C4–2, CWR22Rv1 and PC-3 cells. Western blot and Immunohistochemistry were used to detect protein expression. MTT and Transwell assays were used to test the proliferation and invasion ability. Results ASC-J9® can suppress PCa cell proliferation and invasion in both PCa C4–2 and CWR22Rv1 cells via altering the ATF3 expression. Further mechanistic studies reveal that ASC-J9® can increase the ATF3 expression via decreasing Glutamate-cysteine ligase catalytic (GCLC) subunit expression, which can then lead to decrease the PTK2 expression. Human clinical studies further linked the ATF3 expression to the PCa progression. Preclinical studies using in vivo mouse model also proved ASC-J9® could suppress AR-independent PCa cell invasion, which could be reversed after suppressing ATF3. Conclusions ASC-J9® can function via altering ATF3/PTK2 signaling to suppress the PCa progression in an AR-independent manner.

Author(s):  
Yu Sun ◽  
Kai Xu ◽  
Miao He ◽  
Guilian Fan ◽  
Hongming Lu

Glypican 5 (GPC5) belongs to the family of heparan sulfate proteoglycans (HSPGs). It was initially known as a regulator of growth factors and morphogens. Recently, there have been reports on its correlation with the tumorigenic process in the development of some cancers. However, little is known about its precise role in prostate cancer (PCa). In the present study, we explored the expression pattern and biological functions of GPC5 in PCa cells. Our results showed that GPC5 was lowly expressed in PCa cell lines. Upregulation of GPC5 significantly inhibited PCa cell proliferation and invasion in vitro as well as attenuated tumor growth in vivo. We also found that overexpression of GPC5 inhibited the epithelial‐mesenchymal transition (EMT) and Wnt/β-catenin signaling activation, which was mediated by Sp1. Taken together, we suggest GPC5 as a tumor suppressor in PCa and provide promising therapeutic strategies for PCa.


2013 ◽  
Vol 34 (9) ◽  
pp. 2039-2049 ◽  
Author(s):  
Sushma R. Gundala ◽  
Chunhua Yang ◽  
N. Lakshminarayana ◽  
Ghazia Asif ◽  
Meenakshi V. Gupta ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0119346 ◽  
Author(s):  
Manuj Tandon ◽  
Joseph M. Salamoun ◽  
Evan J. Carder ◽  
Elisa Farber ◽  
Shuping Xu ◽  
...  

Author(s):  
Shuangjian Jiang ◽  
Chengqiang Mo ◽  
Shengjie Guo ◽  
Jintao Zhuang ◽  
Bin Huang ◽  
...  

Abstract Background Human bone marrow mesenchymal stem cells (hBMSCs) are implicated in cancer initiation and metastasis, sometimes by releasing exosomes that mediate cell communication by delivering microRNAs (miRNAs). This study aimed to investigate the physiological mechanisms by which exosomal miR-205 derived from hBMSCs may modulate the growth of prostate cancer cells. Methods Microarray-based gene expression profiling of prostate cancer was adopted to identify differentially expressed genes and regulatory miRNAs, which identified the candidates RHPN2 and miR-205 as the study focus. Then the binding affinity between miR-205 and RHPN2 was identified using in silico analysis and luciferase activity detection. Prostate cancer cells were co-cultured with exosomes derived from hBMSCs treated with either miR-205 mimic or miR-205 inhibitor. Subsequently, prostate cancer cell proliferation, invasion, migration, and apoptosis were detected in vitro. The effects of hBMSCs-miR-205 on tumor growth were investigated in vivo. Results miR-205 was downregulated, while RHPN2 was upregulated in prostate cancer cells. RHPN2 was a target of miR-205, and upregulated miR-205 inhibited prostate cancer cell proliferation, invasion, and migration and promoted apoptosis by targeting RHPN2. Next, experiments demonstrated that hBMSCs-derived exosomes carrying miR-205 contributed to repressed prostate cancer cell proliferation, invasion, and migration and enhanced apoptosis. Furthermore, in vivo assays confirmed the inhibitory effects of hBMSCs-derived exosomal miR-205 on prostate cancer. Conclusion The hBMSCs-derived exosomal miR-205 retards prostate cancer progression by inhibiting RHPN2, suggesting that miR-205 may present a predictor and potential therapeutic target for prostate cancer.


Urology ◽  
1995 ◽  
Vol 46 (3) ◽  
pp. 365-369 ◽  
Author(s):  
Gary G. Schwartz ◽  
Christopher C. Hill ◽  
Theresa A. Oeler ◽  
Michael J. Becich ◽  
Robert R. Bahnson

Sign in / Sign up

Export Citation Format

Share Document