scholarly journals Indirect cholinergic activation slows down pancreatic cancer growth and tumor-associated inflammation

Author(s):  
Paulo L. Pfitzinger ◽  
Laura Fangmann ◽  
Kun Wang ◽  
Elke Demir ◽  
Engin Gürlevik ◽  
...  

Abstract Background Nerve-cancer interactions are increasingly recognized to be of paramount importance for the emergence and progression of pancreatic cancer (PCa). Here, we investigated the role of indirect cholinergic activation on PCa progression through inhibition of acetylcholinesterase (AChE) via clinically available AChE-inhibitors, i.e. physostigmine and pyridostigmine. Methods We applied immunohistochemistry, immunoblotting, MTT-viability, invasion, flow-cytometric-cell-cycle-assays, phospho-kinase arrays, multiplex ELISA and xenografted mice to assess the impact of AChE inhibition on PCa cell growth and invasiveness, and tumor-associated inflammation. Survival analyses were performed in a novel genetically-induced, surgically-resectable mouse model of PCa under adjuvant treatment with gemcitabine+/−physostigmine/pyridostigmine (n = 30 mice). Human PCa specimens (n = 39) were analyzed for the impact of cancer AChE expression on tumor stage and survival. Results We discovered a strong expression of AChE in cancer cells of human PCa specimens. Inhibition of this cancer-cell-intrinsic AChE via pyridostigmine and physostigmine, or administration of acetylcholine (ACh), diminished PCa cell viability and invasion in vitro and in vivo via suppression of pERK signaling, and reduced tumor-associated macrophage (TAM) infiltration and serum pro-inflammatory cytokine levels. In the novel genetically-induced, surgically-resectable PCa mouse model, adjuvant co-therapy with AChE blockers had no impact on survival. Accordingly, survival of resected PCa patients did not differ based on tumor AChE expression levels. Patients with higher-stage PCa also exhibited loss of the ACh-synthesizing enzyme, choline-acetyltransferase (ChAT), in their nerves. Conclusion For future clinical trials of PCa, direct cholinergic stimulation of the muscarinic signaling, rather than indirect activation via AChE blockade, may be a more effective strategy.

2020 ◽  
Author(s):  
Paulo L. Pfitzinger ◽  
Laura Fangmann ◽  
Kun Wang ◽  
Elke Demir ◽  
Engin Gürlevik ◽  
...  

Abstract Background: Nerve-cancer interactions are increasingly recognized to be of paramount importance for the emergence and progression of pancreatic cancer (PCa). Here, we investigated the role of indirect cholinergic activation on PCa progression through inhibition of acetylcholinesterase (AChE) via clinically available AChE-inhibitors, i.e. physostigmine and pyridostigmine.Methods: We applied immunohistochemistry, immunoblotting, MTT-viability, invasion, flow-cytometric-cell-cycle-assays, phospho-kinase arrays, multiplex ELISA and xenografted mice to assess the impact of AChE inhibition on PCa cell growth and invasiveness, and tumor-associated inflammation. Survival analyses were performed in a novel genetically-induced, surgically-resectable mouse model of PCa under adjuvant treatment with gemcitabine+/-physostigmine/pyridostigmine (n=30 mice). Human PCa specimens (n=39) were analyzed for the impact of cancer AChE expression on tumor stage and survival.Results: We discovered a strong expression of AChE in cancer cells of human PCa specimens. Inhibition of this cancer-cell-intrinsic AChE via pyridostigmine and physostigmine, or administration of acetylcholine (ACh), diminished PCa cell viability and invasion in vitro and in vivo via suppression of pERK signaling, and reduced tumor-associated macrophage (TAM) infiltration and serum pro-inflammatory cytokine levels. In the novel genetically-induced, surgically-resectable PCa mouse model, adjuvant co-therapy with AChE blockers had no impact on survival. Accordingly, survival of resected PCa patients did not differ based on tumor AChE expression levels. Patients with higher-stage PCa also exhibited loss of the ACh-synthesizing enzyme, choline-acetyltransferase (ChAT), in their nerves.Conclusion: For future clinical trials of PCa, direct cholinergic stimulation of the muscarinic signaling, rather than indirect activation via AChE blockade, may be a more effective strategy.


2020 ◽  
Author(s):  
Paulo L. Pfitzinger ◽  
Laura Fangmann ◽  
Kun Wang ◽  
Elke Demir ◽  
Engin Gürlevik ◽  
...  

Abstract Background Nerve-cancer interactions are increasingly recognized to be of paramount importance for the emergence and progression of pancreatic cancer (PCa). Here, we investigated the role of indirect cholinergic activation on PCa progression through inhibition of acetylcholinesterase (AChE) via clinically available AChE-inhibitors, i.e. physostigmine and pyridostigmine. Methods We applied immunohistochemistry, immunoblotting, MTT-viability, invasion, flow-cytometric-cell-cycle-assays, phospho-kinase arrays, multiplex ELISA and xenografted mice to assess the impact of AChE inhibition on PCa cell growth and invasiveness, and tumor-associated inflammation. Survival analyses were performed in a novel genetically-induced, surgically-resectable mouse model of PCa under adjuvant treatment with gemcitabine+/-physostigmine/pyridostigmine (n = 30 mice). Human PCa specimens (n = 39) were analyzed for the impact of cancer AChE expression on tumor stage and survival. Results We discovered a strong expression of AChE in cancer cells of human PCa specimens. Inhibition of this cancer-cell-intrinsic AChE via pyridostigmine and physostigmine, or administration of acetylcholine (ACh), diminished PCa cell viability and invasion in vitro and in vivo via suppression of pERK signaling, and reduced tumor-associated macrophage (TAM) infiltration and serum pro-inflammatory cytokine levels. In the novel genetically-induced, surgically-resectable PCa mouse model, adjuvant co-therapy with AChE blockers had no impact on survival. Accordingly, survival of resected PCa patients did not differ based on tumor AChE expression levels. Patients with higher-stage PCa also exhibited loss of the ACh-synthesizing enzyme, choline-acetyltransferase (ChAT), in their nerves. Conclusion For future clinical trials of PCa, direct cholinergic stimulation of the muscarinic signaling, rather than indirect activation via AChE blockade, may be a more effective strategy.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Obinna C. Ubah ◽  
Andrew J. Porter ◽  
Caroline J. Barelle

Anti-drug antibodies (ADAs), specific for biotherapeutic drugs, are associated with reduced serum drug levels and compromised therapeutic response. The impact of ADA on the bioavailability and clinical efficacy of blockbuster anti-hTNF-α monoclonal antibodies is well recognised, especially for adalimumab and infliximab treatments, with the large and complex molecular architecture of classical immunoglobulin antibody drugs, in part, responsible for the immunogenicity seen in patients. The initial aim of this study was to develop solid-phase enzyme-linked immunosorbent assays (ELISA) and an in vitro cell-based method to accurately detect ADA and estimate its impact on the preclinical in vivo efficacy outcomes of two novel, nonimmunoglobulin VNAR fusion anti-hTNF-α biologics (Quad-X™ and D1-NDure™-C4) and Humira®, a brand of adalimumab. Serum drug levels and the presence of ADA were determined in a transgenic mouse model of polyarthritis (Tg197) when Quad-X™ and Humira® were dosed at 1 mg/kg and D1-NDure™-C4 was dosed at 30 mg/kg. The serum levels of the Quad-X™ and D1-NDure™-C4 modalities were consistently high and comparable across all mice within the same treatment groups. In 1 mg/kg and 3 mg/kg Quad-X™- and 30 mg/kg D1-NDure™-C4-treated mice, an average trough drug serum concentration of 8 μg/mL, 50 μg/mL, and 350 μg/mL, respectively, were estimated. In stark contrast, Humira® trough serum concentrations in the 1 mg/kg treatment group ranged from <0.008 μg/mL to 4 μg/mL with trace levels detected in 7 of the 8 animals treated. Trough serum Humira® and Quad-X™ concentrations in 3 mg/kg treatment samples were comparable; however, the functionality of the detected Humira® serum was significantly compromised due to neutralising ADA. The impact of ADA went beyond the simple and rapid clearance of Humira®, as 7/8 serum samples also showed no detectable capacity to neutralise hTNF-α-mediated cytotoxicity in a murine fibrosarcoma (L929) cell assay. The neutralisation capacity of all the VNAR constructs remained unchanged at the end of the experimental period (10 weeks). The data presented in this manuscript goes some way to explain the exciting outcomes of the previously published preclinical in vivo efficacy data, which showed complete control of disease at Quad-X™ concentrations of 0.5 mg/kg, equivalent to 10x the in vivo potency of Humira®. This independent corroboration also validates the robustness and reliability of the assay techniques reported in this current manuscript, and while it comes with the caveat of a mouse study, it does appear to suggest that these particular VNAR constructs, at least, are of low inherent immunogenicity.


Cancers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 254 ◽  
Author(s):  
Vincent Drubay ◽  
Nicolas Skrypek ◽  
Lucie Cordiez ◽  
Romain Vasseur ◽  
Céline Schulz ◽  
...  

Pancreatic adenocarcinoma (PDAC) is one of the most deadly cancers in the Western world because of a lack of early diagnostic markers and efficient therapeutics. At the time of diagnosis, more than 80% of patients have metastasis or locally advanced cancer and are therefore not eligible for surgical resection. Pancreatic cancer cells also harbour a high resistance to chemotherapeutic drugs such as gemcitabine that is one of the main palliative treatments for PDAC. Proteins involved in TGF-β signaling pathway (SMAD4 or TGF-βRII) are frequently mutated in PDAC (50–80%). TGF-β signalling pathway plays antagonistic roles during carcinogenesis by initially inhibiting epithelial growth and later promoting the progression of advanced tumors and thus emerged as both tumor suppressor and oncogenic pathways. In order to decipher the role of TGF-β in pancreatic carcinogenesis and chemoresistance, we generated CAPAN-1 and CAPAN-2 cell lines knocked down for TGF-βRII (first actor of TGF-β signaling). The impact on biological properties of these TGF-βRII-KD cells was studied both in vitro and in vivo. We show that TGF-βRII silencing alters tumor growth and migration as well as resistance to gemcitabine. TGF-βRII silencing also leads to S727 STAT3 and S63 c-Jun phosphorylation, decrease of MRP3 and increase of MRP4 ABC transporter expression and induction of a partial EMT phenotype. These markers associated with TGF-β signaling pathways may thus appear as potent therapeutic tools to better treat/manage pancreatic cancer.


Pancreatology ◽  
2013 ◽  
Vol 13 (2) ◽  
pp. e13
Author(s):  
S. Ali ◽  
A. Ahmad ◽  
A. Aboukameel ◽  
A. Ahmed ◽  
B. Bao ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1957
Author(s):  
Sebastian Krug ◽  
Julia Weissbach ◽  
Annika Blank ◽  
Aurel Perren ◽  
Johannes Haybaeck ◽  
...  

Recently, we identified the homeodomain transcription factor Cut homeobox 1 (CUX1) as mediator of tumour de-differentiation and metastatic behaviour in human insulinoma patients. In insulinomas, CUX1 enhanced tumour progression by stimulating proliferation and angiogenesis in vitro and in vivo. In patients with non-functional pancreatic neuroendocrine tumours (PanNET), however, the impact of CUX1 remains to be elucidated. Here, we analysed CUX1 expression in two large independent cohorts (n = 43 and n = 141 tissues) of non-functional treatment-naïve and pre-treated PanNET patients, as well as in the RIP1Tag2 mouse model of pancreatic neuroendocrine tumours. To further assess the functional role of CUX1, expression profiling of DNA damage-, proliferation- and apoptosis-associated genes was performed in CUX1-overexpressing Bon-1 cells. Validation of differentially regulated genes was performed in Bon-1 and QGP1 cells with knock-down and overexpression strategies. CUX1 expression assessed by a predefined immunoreactivity score (IRS) was significantly associated with shorter progression-free survival (PFS) of pre-treated PanNET patients (23 vs. 8 months; p = 0.005). In treatment-naïve patients, CUX1 was negatively correlated with grading and recurrence-free survival (mRFS of 39 versus 8 months; p = 0.022). In both groups, high CUX1 levels indicated a metastatic phenotype. Functionally, CUX1 upregulated expression of caspases and death associated protein kinase 1 (DAPK1), known as mediators of tumour progression and resistance to cytotoxic drugs. This was also confirmed in both cell lines and human tissues. In the RIP1Tag2 mouse model, CUX1 expression was associated with advanced tumour stage and resistance to apoptosis. In summary, we identified the transcription factor CUX1 as mediator of tumour progression in non-functional PanNET in vitro and in vivo, indicating that the CUX1-dependent signalling network is a promising target for future therapeutic intervention.


2019 ◽  
Vol 3 (s1) ◽  
pp. 16-16
Author(s):  
Nina Steele ◽  
Valerie Irizarry-Negron ◽  
Veerin Sirihorachai ◽  
Samantha Kemp ◽  
Eileen Carpenter ◽  
...  

OBJECTIVES/SPECIFIC AIMS: Pancreatic ductal adenocarcinoma (PDA) has a dismal 5-year survival rate of 9%, making this disease one of the deadliest human malignancies (https://seer.cancer.gov/). Primary barriers to the treatment of pancreatic cancer include extensive stromal interactions and sustained immune suppression. Aberrant Hedgehog (HH) pathway activity is a hallmark of pancreatic tumorigenesis. Tumor-derived HH ligands signal in a paracrine fashion to the surrounding stroma to influence tumor growth. Expression of HH ligands increases during PDA progression, and previous work has shown that genetic deletion of Sonic HH (Shh) from the epithelium of mice with pancreatic tumors results in increased Indian HH (Ihh) expression. This research aims to investigate the translational impact of changes in immune infiltration following deletion of IHH in a preclinical mouse model of pancreatic cancer. METHODS/STUDY POPULATION: Ihh was deleted in tumor cells lines (IhhKO) derived from a genetically engineered mouse model of pancreatic cancer (LSL-KrasG12D/+;LSL-TrpR270H;P48-Cre), using CRISPR/Cas-9 gene editing to assess the role of Ihh in the tumor microenvironment. The level of HH signaling was determined using tumor cell co-cultures with Gli1lacZ fibroblasts (derived from mice with a lacZ reporter allele knocked into the Gli1 locus), in which Beta Galactosidase activity serves as a readout for HH signaling. WT and IhhKO tumor cells were orthotopically transplanted into the pancreas of syngeneic C57BL/6 mice. Human pancreas samples were obtained from surgical resection of pancreatic adenocarcinoma, or fine needle biopsy procedure (FNB). Immune profiling of mouse and human pancreatic tumors was performed using Cytometry Time-of-Flight analysis (CyTOF), and tumor composition was analyzed by single-cell RNA sequencing (scRNA seq). In vitro cultures with pancreatic fibroblasts treated with either WT or IhhKO tumor cell conditioned media (CM) were cultured with bone-marrow derived macrophages to assess tumor crosstalk. RESULTS/ANTICIPATED RESULTS: Tumor cells lacking Ihh were generated through CRISPR/Cas-9 deletion, and this was confirmed by qRT-PCR. Co-culture of IhhKO tumor cells with Gli1lacZ fibroblasts results in decreased Gli1 expression both in vitro and in vivo. Immune profiling revealed that tumors lacking Ihh have significantly fewer tumor associated macrophages (CD11b+/F4/80+/CD206+), resulting in decreased presence of immunosuppressive factors such as arginase 1 and PDL1. Immune phenotyping of human pancreatic tissues revealed similar populations of immunosuppressive myeloid cells present in tumors. In vitro co-cultures demonstrated that, in the presence of bone-marrow derived macrophages, immunosuppressive IL-6 production was reduced in pancreatic fibroblasts cultured with IhhKO-CM, as compared to fibroblasts cultured with WT-CM, providing mechanistic insight into the in vivo phenotype observed. Further, scRNA seq analysis suggests that modulation of HH signaling in the tumor microenvironment alters chemokine and immunomodulatory signaling pathways driven by fibroblasts in the pancreatic tumor microenvironment. DISCUSSION/SIGNIFICANCE OF IMPACT: HH signaling in pancreatic fibroblasts contributes to the establishment of an immune suppressive environment in pancreatic cancer. Combining methods to target HH signaling and immune checkpoint therapy has translational potential in treating pancreatic cancer patients.


Oncogene ◽  
2021 ◽  
Author(s):  
Junjian Li ◽  
Xiaoliang Chen ◽  
Liqun Zhu ◽  
Zhenghong Lao ◽  
Tianhao Zhou ◽  
...  

AbstractPancreatic ductal adenocarcinoma (PDAC) is the deadliest cancer mainly owing to its proclivity to early metastasis and the lack of effective targeted therapeutic drugs. Hence, understanding the molecular mechanisms underlying early invasion and metastasis by PDAC is imperative for improving patient outcomes. The present study identified that upregulation of TSPAN8 expression in PDAC facilitates metastasis in vivo and in vitro. We found SOX9 as a key transcriptional regulator of TSPAN8 expression in response to EGF stimulation. SOX9 modulation was sufficient to positively regulate endogenous expression of TSPAN8, with concomitant in vitro phenotypic changes such as loss of cell–matrix adherence and increased invasion. Moreover, increased SOX9 and TSPAN8 levels were shown to correlate in human pancreatic cancer specimens and downregulated in vitro by EGFR tyrosine kinase inhibitors. High expression of SOX9 and TSPAN8 has been associated with tumor stage, poor prognosis and poor patient survival in PDAC. In conclusion, this study highlights the importance of the EGF-SOX9-TSPAN8 signaling cascade in the control of PDAC invasion and implies that TSPAN8 may be a promising novel therapeutic target for the treatment of PDAC.


Author(s):  
Cécile Derieux ◽  
Sébastien Roux ◽  
Thierry Plouvier ◽  
Audrey Léauté ◽  
Agathe Brugoux ◽  
...  

Chronic sodium bromide relieves autistic-like deficits in the Oprm1 mouse model of autism and modulates the activity of serotonin and dopamine receptors in vitro C. DERIEUX 1 , S. ROUX 1 , A. LEAUTE 1 , T. PLOUVIER 2 , J.A.J. BECKER 1 , J. LE MERRER 1 1 Déficits de Récompense, GPCRs et Sociabilité, Physiologie de la Reproduction et des Comportements, INRA UMR0085, CNRS UMR7247, Université de Tours, Inserm ; 37380 Nouzilly, France 2 Térali Innov, 37230 Fondettes, France Corresponding author : [email protected] Autism spectrum disorders (ASD) are complex neurodevelopmental diseases whose diagnosis lies on the detection of impaired social skills together with restricted and repetitive behavior and interests (DSM-5). Although the etiology of ASD remains mostly unknown, impaired excitation/inhibition ratio appears as a common mechanistic feature. Bromide ion is known to reduce hyperexcitability, possibly by competing with chloride ions at channels and transporters and may thus have therapeutic potential in ASD. Aims : We evaluated the therapeutic potential of bromide ion in the Oprm1 -/- mouse model of ASD and the molecular mechanisms involved in bromide treatment, notably effects on GPCRs. Methods : In vivo , we first assessed the effect of chronically administered sodium bromide on autistic-like behavioral deficits and performed RT-qPCR on brain structures known to be involved in ASD. In vitro , we evaluated the impact of bromide ion on G-protein mediated signaling of serotonin and dopamine receptors. Results : In vivo , sodium bromide (30 to 500 mg/Kg) dose-dependently improved social interaction and preference, reduced stereotypies and decreased anxiety. Bromide also impacts the expression of genes coding for some GPCRs, chloride transporters and GABA A subunits. In vitro , bromide behaves as a positive allosteric modulator of 5-HT 6 , 5-HT 7 and D1 receptors but not 5-HT 4 and D2 receptors. Conclusions : The beneficial effects of bromide administration in a genetic murine model of ASD and its impact on both gene expression and GPCR pharmacology predicts high translational potential in patients with autism, despite high heterogeneity in etiology and symptoms.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Sabrina Bimonte ◽  
Antonio Barbieri ◽  
Giuseppe Palma ◽  
Antonio Luciano ◽  
Domenica Rea ◽  
...  

Pancreatic cancer is a malignant neoplasm originating from transformed cells arising in tissues forming the pancreas. The best chemotherapeutic agent used to treat pancreatic cancer is the gemcitabine. However, gemcitabine treatment is associated with many side effects. Thus novel strategies involving less toxic agents for treatment of pancreatic cancer are necessary. Curcumin is one such agent that inhibits the proliferation and angiogenesis of a wide variety of tumor cells, through the modulation of many cell signalling pathways. In this study, we investigated whether curcumin plays antitumor effects in MIA PaCa-2 cells.In vitrostudies showed that curcumin inhibits the proliferation and enhances apoptosis of MIA PaCa-2 cells. To test whether the antitumor activity of curcumin is also observedin vivo, we generated an orthotopic mouse model of pancreatic cancer by injection of MIA PaCa-2 cells in nude mice. We placed mice on diet containing curcumin at 0.6% for 6 weeks. In these treated mice tumors were smaller with respect to controls and showed a downregulation of the transcription nuclear factor NF-κB and NF-κB-regulated gene products. Overall, our data indicate that curcumin has a great potential in treatment of human pancreatic cancer through the modulation of NF-κB pathway.


Sign in / Sign up

Export Citation Format

Share Document