scholarly journals The hypoxic tumor microenvironment in vivo selects the cancer stem cell fate of breast cancer cells

2018 ◽  
Vol 20 (1) ◽  
Author(s):  
Hoon Kim ◽  
Qun Lin ◽  
Peter M. Glazer ◽  
Zhong Yun
2018 ◽  
Author(s):  
Federico Bocci ◽  
Larisa Gearhart-Serna ◽  
Marcelo Boareto ◽  
Mariana Ribeiro ◽  
Eshel Ben-Jacob ◽  
...  

AbstractThe Epithelial-Mesenchymal Transition (EMT) and Cancer Stem Cell (CSC) formation are two paramount processes driving tumor progression, therapy resistance and cancer metastasis. Some recent experiments show that cells with varying EMT and CSC phenotypes are spatially segregated in the primary tumor. The underlying mechanisms generating such spatiotemporal dynamics and heterogeneity in the tumor micro-environment, however, remain largely unexplored. Here, we show through a mechanism-based dynamical model that the diffusion of EMT-inducing signals such as TGF-β in a tumor tissue, together with non-cell autonomous control of EMT and CSC decision-making via juxtacrine signaling mediated via the Notch signaling pathway, can explain experimentally observed disparate localization of subsets of CSCs with varying EMT states in the tumor. Our simulations show that the more mesenchymal CSCs lie at the invasive edge, while the hybrid epithelial/mesenchymal (E/M) CSCs reside in the tumor interior. Further, motivated by the role of Notch-Jagged signaling in mediating EMT and stemness, we investigated the microenvironmental factors that promote Notch-Jagged signaling. We show that many inflammatory cytokines that can promote Notch-Jagged signaling such as IL-6 can (a) stabilize a hybrid E/M phenotype, (b) increase the likelihood of spatial proximity of hybrid E/M cells, and (c) expand the fraction of CSCs. To validate the predicted connection between Notch-Jagged signaling and stemness, we knocked down JAG1 in hybrid E/M SUM149 human breast cancer cellsin vitro. JAG1 knockdown significantly restricted organoid formation, confirming the key role that Notch-Jagged signaling can play in tumor progression. Together, our integrated computational-experimental framework reveals the underlying principles of spatiotemporal dynamics of EMT and CSCs in the tumor microenvironment.Significance statementThe presence of heterogeneous subsets of cancer stem cells (CSCs) remains a clinical challenge. These subsets often occupy different regions in the primary tumor and have varied epithelial-mesenchymal phenotypes. Here, we device a theoretical framework to investigate how the tumor microenvironment (TME) modulates this spatial patterning. We find that a spatial gradient of EMT-inducing signal, coupled with juxtacrine Notch-JAG1 signaling triggered by inflammatory cytokines in TME, explains this spatial heterogeneity. Finally,in vitroJAG1 knockdown experiments in triple negative breast cancer cells severely restricts the growth of tumor organoid, hence validating the association between JAG1 and CSC fraction. Our results offer insights into principles of spatiotemporal patterning in TME, and identifies a relevant target to alleviate multiple CSC subsets – JAG1.


2015 ◽  
Vol 357 (1) ◽  
pp. 206-218 ◽  
Author(s):  
Saeb Aliwaini ◽  
Jade Peres ◽  
Wendy L. Kröger ◽  
Angelique Blanckenberg ◽  
Jo de la Mare ◽  
...  

2014 ◽  
Vol 452 (4) ◽  
pp. 928-932 ◽  
Author(s):  
Mai Tsuchiya ◽  
Yuka Nakajima ◽  
Naoya Hirata ◽  
Tamaki Morishita ◽  
Hiroyuki Kishimoto ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1936 ◽  
Author(s):  
Nicholas A. Pease ◽  
Miranda S. Shephard ◽  
Mathieu Sertorio ◽  
Susan E. Waltz ◽  
Lisa M. Privette Vinnedge

Breast cancer (BC) is the second leading cause of cancer deaths among women. DEK is a known oncoprotein that is highly expressed in over 60% of breast cancers and is an independent marker of poor prognosis. However, the molecular mechanisms by which DEK promotes tumor progression are poorly understood. To identify novel oncogenic functions of DEK, we performed RNA-Seq analysis on isogenic Dek-knockout and complemented murine BC cells. Gene ontology analyses identified gene sets associated with immune system regulation and cytokine-mediated signaling and differential cytokine and chemokine expression was confirmed across Dek-proficient versus Dek-deficient cells. By exposing murine bone marrow-derived macrophages (BMDM) to tumor cell conditioned media (TCM) to mimic a tumor microenvironment, we showed that Dek-expressing breast cancer cells produce a cytokine milieu, including up-regulated Tslp and Ccl5 and down-regulated Cxcl1, Il-6, and GM-CSF, that drives the M2 polarization of macrophages. We validated this finding in primary murine mammary tumors and show that Dek expression in vivo is also associated with increased expression of M2 macrophage markers in murine tumors. Using TCGA data, we verified that DEK expression in primary human breast cancers correlates with the expression of several genes identified by RNA-Seq in our murine model and with M2 macrophage phenotypes. Together, our data demonstrate that by regulating the production of multiple secreted factors, DEK expression in BC cells creates a potentially immune suppressed tumor microenvironment, particularly by inducing M2 tumor associated macrophage (TAM) polarization.


2010 ◽  
Author(s):  
Anna Maria Calcagno ◽  
Crystal D. Salcido ◽  
Jean-Pierre Gillet ◽  
Chung-Pu Wu ◽  
Jennifer M. Fostel ◽  
...  

2012 ◽  
Author(s):  
Rabia Gilani ◽  
Armina A. Kazi ◽  
Amanda Scheh ◽  
Saranya Chumsri ◽  
Preeti Shah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document