scholarly journals Anaerobic lignocellulolytic microbial consortium derived from termite gut: enrichment, lignocellulose degradation and community dynamics

2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Adèle Lazuka ◽  
Lucas Auer ◽  
Michael O’Donohue ◽  
Guillermina Hernandez-Raquet
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Magdalena Calusinska ◽  
Martyna Marynowska ◽  
Marie Bertucci ◽  
Boris Untereiner ◽  
Dominika Klimek ◽  
...  

Author(s):  
Weiran Zhang ◽  
Weiwei Wang ◽  
Jinghong Wang ◽  
Guinan Shen ◽  
Yuan Yuan ◽  
...  

Lignin is a complex natural organic polymer and is one of the primary components of lignocellulose. The efficient utilization of lignocellulose is limited because it is difficult to degrade lignin. In this study, we screened a lacz1 gene fragment encoding laccase from the macro transcriptome data of a microbial consortium WSC-6, which can efficiently degrade lignocellulose. The RT-qPCR results demonstrated that the expression level of the lacz1 gene during the peak period of lignocellulose degradation by WSC-6 increased by 30.63 times compared to the initial degradation period. Phylogenetic tree analysis demonstrated that the complete lacz1 gene is derived from Bacillus sp. and encoded laccase. The corresponding protein LacZ1 was expressed and purified by Ni-chelating affinity chromatography. The optimum temperature was 75°C, the optimum pH was 4.5, and the highest enzyme activity reached 16.39 U/mg. We found that Cu 2+ was an important cofactor needed for LacZ1 to have enzyme activity. The molecular weight distribution of lignin was determined by Gel Permeation Chromatography (GPC) and changes in the lignin structure were determined by 1H Nuclear Magnetic Resonance Spectra (1H NMR). The degradation products of lignin by LacZ1 were determined by Gas Chromatography and Mass Spectrometry (GC-MS), and three lignin degradation pathways (the gentian acid pathway, benzoic acid pathway, and protocatechuic acid pathway) were proposed. This study provides insight into the degradation of lignin and new insights into high-temperature bacterial laccase. IMPORTANCE Lignin is a natural aromatic polymer that is not easily degraded, hindering the efficient use of lignocellulose-rich biomass resources, such as straw. Biodegradation is a method of decomposing lignin that has recently received increasing attention. In this study, we screened a gene encoding laccase from the lignocellulose-degrading microbial consortium WSC-6, purified the corresponding protein LacZ1, characterized the enzymatic properties of laccase LacZ1, and speculated that the degradation pathway of LacZ1 degrades lignin. This study identified a new, high-temperature bacterial laccase that can degrade lignin, providing insight into lignin degradation by this laccase.


Author(s):  
Magdalena Calusinska ◽  
Martyna Marynowska ◽  
Marie Bertucci ◽  
Boris Untereiner ◽  
Dominika Klimek ◽  
...  

AbstractMiscanthus sp. is regarded as suitable biomass for different biorefinery value chains. However, due to high recalcitrance, its wide use is yet untapped. Termite is the most efficient lignocellulose degrading insect, and its success results from synergistic cooperation with its gut microbiome. Here, we investigated at holobiont level the dynamic adaptation of a higher termite Cortaritermes sp. to imposed Miscanthus diet, with a long-term objective of overcoming lignocellulose recalcitrance. We used an integrative omics approach, comprising amplicon sequencing, metagenomics and metatranscriptomics that we combined with enzymatic characterisation of carbohydrate active enzymes from termite gut Fibrobacteres and Spirochaetae. Adaptation to the new diet was evidenced by reduced gut bacterial diversity and modified gene expression profiles, further suggesting a shift towards utilisation of cellulose and arabinoxylan, two main components of Miscanthus lignocellulose. Low identity of reconstructed microbial genomes to microbes from closely related termite species, supported the hypothesis of a strong phylogenetic relationship between host and its gut microbiome. Application-wise, this makes each termite gut system an endless source of enzymes that are potentially industrially relevant.This study provides a framework for better understanding the complex lignocellulose degradation by the higher termite gut system and paves a road towards its future bioprospecting.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Rania Al-Tohamy ◽  
Jianzhong Sun ◽  
Maha A. Khalil ◽  
Michael Kornaros ◽  
Sameh Samir Ali

Abstract Background The ability of oxidative enzyme-producing micro-organisms to efficiently valorize organic pollutants is critical in this context. Yeasts are promising enzyme producers with potential applications in waste management, while lipid accumulation offers significant bioenergy production opportunities. The aim of this study was to explore manganese peroxidase-producing oleaginous yeasts inhabiting the guts of wood-feeding termites for azo dye decolorization, tolerating lignocellulose degradation inhibitors, and biodiesel production. Results Out of 38 yeast isolates screened from wood-feeding termite gut symbionts, nine isolates exhibited high levels of extracellular manganese peroxidase (MnP) activity ranged between 23 and 27 U/mL after 5 days of incubation in an optimal substrate. Of these MnP-producing yeasts, four strains had lipid accumulation greater than 20% (oleaginous nature), with Meyerozyma caribbica SSA1654 having the highest lipid content (47.25%, w/w). In terms of tolerance to lignocellulose degradation inhibitors, the four MnP-producing oleaginous yeast strains could grow in the presence of furfural, 5-hydroxymethyl furfural, acetic acid, vanillin, and formic acid in the tested range. M. caribbica SSA1654 showed the highest tolerance to furfural (1.0 g/L), 5-hydroxymethyl furfural (2.5 g/L) and vanillin (2.0 g/L). Furthermore, M. caribbica SSA1654 could grow in the presence of 2.5 g/L acetic acid but grew moderately. Furfural and formic acid had a significant inhibitory effect on lipid accumulation by M. caribbica SSA1654, compared to the other lignocellulose degradation inhibitors tested. On the other hand, a new MnP-producing oleaginous yeast consortium designated as NYC-1 was constructed. This consortium demonstrated effective decolorization of all individual azo dyes tested within 24 h, up to a dye concentration of 250 mg/L. The NYC-1 consortium's decolorization performance against Acid Orange 7 (AO7) was investigated under the influence of several parameters, such as temperature, pH, salt concentration, and co-substrates (e.g., carbon, nitrogen, or agricultural wastes). The main physicochemical properties of biodiesel produced by AO7-degraded NYC-1 consortium were estimated and the results were compared to those obtained from international standards. Conclusion The findings of this study open up a new avenue for using peroxidase-producing oleaginous yeasts inhabiting wood-feeding termite gut symbionts, which hold great promise for the remediation of recalcitrant azo dye wastewater and lignocellulosic biomass for biofuel production. Graphical Abstract


2020 ◽  
Vol 6 (1) ◽  
pp. 123-135
Author(s):  
Susana Martínez Arbas ◽  
Shaman Narayanasamy ◽  
Malte Herold ◽  
Laura A. Lebrun ◽  
Michael R. Hoopmann ◽  
...  

AbstractViruses and plasmids (invasive mobile genetic elements (iMGEs)) have important roles in shaping microbial communities, but their dynamic interactions with CRISPR-based immunity remain unresolved. We analysed generation-resolved iMGE–host dynamics spanning one and a half years in a microbial consortium from a biological wastewater treatment plant using integrated meta-omics. We identified 31 bacterial metagenome-assembled genomes encoding complete CRISPR–Cas systems and their corresponding iMGEs. CRISPR-targeted plasmids outnumbered their bacteriophage counterparts by at least fivefold, highlighting the importance of CRISPR-mediated defence against plasmids. Linear modelling of our time-series data revealed that the variation in plasmid abundance over time explained more of the observed community dynamics than phages. Community-scale CRISPR-based plasmid–host and phage–host interaction networks revealed an increase in CRISPR-mediated interactions coinciding with a decrease in the dominant ‘Candidatus Microthrix parvicella’ population. Protospacers were enriched in sequences targeting genes involved in the transmission of iMGEs. Understanding the factors shaping the fitness of specific populations is necessary to devise control strategies for undesirable species and to predict or explain community-wide phenotypes.


RSC Advances ◽  
2017 ◽  
Vol 7 (62) ◽  
pp. 39011-39017 ◽  
Author(s):  
Jiajin Liang ◽  
Yunqin Lin ◽  
Tian Li ◽  
Fanyong Mo

Herein, microbial consortium OEM1 that could simultaneously decompose lignocellulose and chlorophenols was screened from spent mushroom substrates.


Sign in / Sign up

Export Citation Format

Share Document