scholarly journals Targeted biomass degradation by the higher termite gut system - integrative omics applied to host and its gut microbiome

Author(s):  
Magdalena Calusinska ◽  
Martyna Marynowska ◽  
Marie Bertucci ◽  
Boris Untereiner ◽  
Dominika Klimek ◽  
...  

AbstractMiscanthus sp. is regarded as suitable biomass for different biorefinery value chains. However, due to high recalcitrance, its wide use is yet untapped. Termite is the most efficient lignocellulose degrading insect, and its success results from synergistic cooperation with its gut microbiome. Here, we investigated at holobiont level the dynamic adaptation of a higher termite Cortaritermes sp. to imposed Miscanthus diet, with a long-term objective of overcoming lignocellulose recalcitrance. We used an integrative omics approach, comprising amplicon sequencing, metagenomics and metatranscriptomics that we combined with enzymatic characterisation of carbohydrate active enzymes from termite gut Fibrobacteres and Spirochaetae. Adaptation to the new diet was evidenced by reduced gut bacterial diversity and modified gene expression profiles, further suggesting a shift towards utilisation of cellulose and arabinoxylan, two main components of Miscanthus lignocellulose. Low identity of reconstructed microbial genomes to microbes from closely related termite species, supported the hypothesis of a strong phylogenetic relationship between host and its gut microbiome. Application-wise, this makes each termite gut system an endless source of enzymes that are potentially industrially relevant.This study provides a framework for better understanding the complex lignocellulose degradation by the higher termite gut system and paves a road towards its future bioprospecting.

Author(s):  
Zhenhua Dang ◽  
Yuanyuan Jia ◽  
Yunyun Tian ◽  
Jiabin Li ◽  
Yanan Zhang ◽  
...  

Organisms have evolved effective and distinct adaptive strategies to survive. Stipa grandis is one of the widespread dominant species on the typical steppe of the Inner Mongolian Plateau, and is regarded as a suitable species for studying the effects of grazing in this region. Although phenotypic (morphological and physiological) variations in S. grandis in response to long-term grazing have been identified, the molecular mechanisms underlying adaptations and plastic responses remain largely unknown. Accordingly, we performed a transcriptomic analysis to investigate changes in gene expression of S. grandis under four different grazing intensities. A total of 2,357 differentially expressed genes (DEGs) were identified among the tested grazing intensities, suggesting long-term grazing resulted in gene expression plasticity that affected diverse biological processes and metabolic pathways in S. grandis. DEGs were identified that indicated modulation of Calvin–Benson cycle and photorespiration metabolic pathways. The key gene´expression profiles encoding various proteins (e.g., Ribulose-1,5-bisphosphate carboxylase/oxygenase, fructose-1,6-bisphosphate aldolase, glycolate oxidase etc.) involved in these pathways suggest that they may synergistically respond to grazing to increase the resilience and stress tolerance of S. grandis. Our findings provide scientific clues for improving grassland use and protection, and identify important questions to address in future transcriptome studies.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Magdalena Calusinska ◽  
Martyna Marynowska ◽  
Marie Bertucci ◽  
Boris Untereiner ◽  
Dominika Klimek ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Sun Young Lee ◽  
Yong Kwang Park ◽  
Cheol-Hee Yoon ◽  
Kisoon Kim ◽  
Kyung-Chang Kim

Science ◽  
2019 ◽  
Vol 364 (6438) ◽  
pp. 399-402 ◽  
Author(s):  
Chengang Xiang ◽  
Yuanyuan Du ◽  
Gaofan Meng ◽  
Liew Soon Yi ◽  
Shicheng Sun ◽  
...  

The maintenance of terminally differentiated cells, especially hepatocytes, in vitro has proven challenging. Here we demonstrated the long-term in vitro maintenance of primary human hepatocytes (PHHs) by modulating cell signaling pathways with a combination of five chemicals (5C). 5C-cultured PHHs showed global gene expression profiles and hepatocyte-specific functions resembling those of freshly isolated counterparts. Furthermore, these cells efficiently recapitulated the entire course of hepatitis B virus (HBV) infection over 4 weeks with the production of infectious viral particles and formation of HBV covalently closed circular DNA. Our study demonstrates that, with a chemical approach, functional maintenance of PHHs supports long-term HBV infection in vitro, providing an efficient platform for investigating HBV cell biology and antiviral drug screening.


2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Suyan Tian ◽  
Lei Zhang

Multiple sclerosis (MS) is a common neurological disability of the central nervous system. Immune-modulatory therapy with interferon-β (IFN-β) has been used as a first-line treatment to prevent relapses in MS patients. While the therapeutic mechanism of IFN-β has not been fully elucidated, the data of microarray experiments that collected longitudinal gene expression profiles to evaluate the long-term response of IFN-β treatment have been analyzed using statistical methods that were incapable of dealing with such data. In this study, the GeneRank method was applied to generate weighted gene expression values and the monotonically expressed genes (MEGs) for both IFN-β treatment responders and nonresponders were identified. The proposed procedure identified 13 MEGs for the responders and 2 MEGs for the nonresponders, most of which are biologically relevant to MS. Our work here provides some useful insight into the mechanism of IFN-β treatment for MS patients. A full understanding of the therapeutic mechanism will enable a more personalized treatment strategy possible.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. SCI-42-SCI-42
Author(s):  
Norman N. Iscove

Abstract Abstract SCI-42 For many years a distinction was drawn between prospectively separable murine HSC populations with long-term, essentially permanent reconstituting potential (LT-HSC), versus HSC populations yielding short-term engraftment lasting only 4 – 6 weeks after transplantation (ST-HSC). Recent work based on transplantation of single cells shows that highly purified populations of LT-HSC prepared by standard sorting parameters consist in fact predominantly of a distinct, newly recognized class of intermediate- term reconstituting cells (IT-HSC) whose grafts endure longer than short-term HSC but also eventually fail (1). IT-HSC are separable from long-term reconstituting cells on the basis of expression of more alpha2 integrin and less SLAM150. Crucial to recognition of the distinction between LT- and IT-HSC are the endpoints used to evaluate reconstitution. If blood erythroid or myeloid reconstitution is measured, IT reconstitution is readily distinguished by the disappearance of these elements by 16 wk post-transplant. If instead reconstitution is measured simply by presence of blood leukocytes of donor origin, which in the mouse are almost entirely lymphocytes, the distinction is not made because lymphoid elements persist even in fading IT clones to 24 wk or beyond. The observations imply a need for reinterpretation of most of the published descriptions of the biology and gene expression profiles previously attributed to LT-HSC but in fact derived from analysis of populations that consisted mainly of IT-HSC. The capacity now to separate LT- from IT-HSC creates new opportunities for probing the mechanisms that specify and sustain long term function in the former but not the latter. 1. Benveniste P, Frelin C, Janmohamed S, Barbara M, Herrington R, Hyam D, Iscove NN. Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell. 2010;6:48–58 Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Katharina Jovic ◽  
Jacopo Grilli ◽  
Mark G. Sterken ◽  
Basten L. Snoek ◽  
Joost A. G. Riksen ◽  
...  

AbstractBackgroundThe detrimental effects of a short bout of stress can persist, and potentially turn lethal, long after the return to normal conditions. Thermotolerance, which is the capacity of an organism to withstand relatively extreme temperatures, is influenced by the response during stress exposure, as well as the recovery process afterwards. While heat-shock response mechanisms have been studied intensively, predicting thermal tolerance remains a challenge.ResultsHere, we use the nematode Caenorhabditis elegans to measure transcriptional resilience to heat stress and predict thermotolerance. Using high dimensionality reduction techniques in combination with genome-wide gene expression profiles collected in three high resolution time-series during control, heat stress and recovery conditions, we infer a quantitative scale capturing the extent of stress-induced transcriptome dynamics in a single value. This scale provides a basis for evaluating transcriptome resilience, defined here as the ability to depart from stress-expression dynamics during recovery. Independent replication across multiple highly divergent genotypes reveals that the transcriptional resilience parameter measured after a spike in temperature is quantitatively linked to long-term survival after heat stress.ConclusionOur findings imply that thermotolerance is an intrinsic property that pre-determines long term outcome of stress and can be predicted by the transcriptional resilience parameter. Inferring the transcriptional resilience parameters of higher organisms could aid in evaluating rehabilitation strategies after stresses such as disease and trauma.


Sign in / Sign up

Export Citation Format

Share Document