scholarly journals Sand fly and Leishmania spp. survey in Vojvodina (Serbia): first detection of Leishmania infantum DNA in sand flies and the first record of Phlebotomus (Transphlebotomus) mascittii Grassi, 1908

2017 ◽  
Vol 10 (1) ◽  
Author(s):  
Slavica Vaselek ◽  
Nazli Ayhan ◽  
Gizem Oguz ◽  
Ozge Erisoz Kasap ◽  
Sara Savić ◽  
...  
2021 ◽  
Vol 17 (3) ◽  
pp. e1009354
Author(s):  
Monica E. Staniek ◽  
James G. C. Hamilton

Globally visceral leishmaniasis (VL) causes thousands of human deaths every year. In South America, the etiologic agent, Leishmania infantum, is transmitted from an infected canine reservoir to human hosts by the bite of the sand fly vector; predominantly Lutzomyia longipalpis. Previous evidence from model rodent systems have suggested that the odour of infected hosts is altered by the parasite making them more attractive to the vector leading to an increased biting rate and improved transmission prospects for the pathogen. However, there has been no assessment of the effect of Le infantum infection on the attractiveness of dogs, which are the natural reservoirs for human infection. Hair collected from infected and uninfected dogs residing in a VL endemic city in Brazil was entrained to collect the volatile chemical odours present in the headspace. Female and male Lu. longipalpis sand flies were offered a choice of odour entrained from infected and uninfected dogs in a series of behavioural experiments. Odour of uninfected dogs was equally attractive to male or female Lu. longipalpis when compared to a solvent control. Female Lu. longipalpis were significantly more attracted to infected dog odour than uninfected dog odour in all 15 experimental replicates (average 45.7±0.87 females attracted to infected odour; 23.9±0.82 to uninfected odour; paired T-test, P = 0.000). Male Lu. longipalpis did not significantly prefer either infected or uninfected odour (average 36.1±0.4 males to infected odour; 35.7±0.6 to uninfected odour; paired T-test, P = 0.722). A significantly greater proportion of females chose the infected dog odour compared to the males (paired T-test, P = 0.000). The results showed that the odour of dogs infected with Le. infantum was significantly more attractive to blood-seeking female sand flies than it was to male sand flies. This is strong evidence for parasite manipulation of the host odour in a natural transmission system and indicates that infected dogs may have a disproportionate significance in maintaining infection in the canine and human population.


2021 ◽  
Vol 2 ◽  
Author(s):  
Erich Loza Telleria ◽  
Daisy Aline Azevedo-Brito ◽  
Barbora Kykalová ◽  
Bruno Tinoco-Nunes ◽  
André Nóbrega Pitaluga ◽  
...  

Phlebotomine sand flies (Diptera, Psychodidae) belonging to the Lutzomyia genus transmit zoonoses in the New World. Lutzomyia longipalpis is the main vector of Leishmania infantum, which is the causative agent of visceral leishmaniasis in Brazil. To identify key molecular aspects involved in the interaction between vector and pathogens and contribute to developing disease transmission controls, we investigated the sand fly innate immunity mediated by the Janus kinase/signal transducer and activator of transcription (Jak-STAT) pathway in response to L. infantum infection. We used two study models: L. longipalpis LL5 embryonic cells co-cultured with L. infantum and sand fly females artificially infected with the parasite. We used qPCR to follow the L. longipalpis gene expression of molecules involved in the Jak-STAT pathway. Also, we modulated the Jak-STAT mediated immune response to understand its role in Leishmania parasite infection. For that, we used RNAi to silence the pathway regulators, protein inhibitor of activated STATs (PIAS) in LL5 cells, and STAT in adult females. In addition, the pathway suppression effect on parasite development within the vector was assessed by light microscopy in late-phase infection. The silencing of the repressor PIAS in LL5 cells led to a moderate increase in a protein tyrosine phosphatase 61F (PTP61F) expression. It suggests a compensatory regulation between these two repressors. L. infantum co-culture with LL5 cells upregulated repressors PIAS, suppressor of cytokine signaling (SOCS), and PTP61F. It also downmodulated virus-induced RNA-1 (VIR-1), a pathway effector, indicating that the parasite could repress the Jak-STAT pathway in LL5 cells. In Leishmania-infected L. longipalpis females, STAT and the antimicrobial peptide attacin were downregulated on the third day post-infection, suggesting a correlation that favors the parasite survival at the end of blood digestion in the sand fly. The antibiotic treatment of infected females showed that the reduction of gut bacteria had little effect on the Jak-STAT pathway regulation. STAT gene silencing mediated by RNAi reduced the expression of inducible nitric oxide synthase (iNOS) and favored Leishmania growth in sand flies on the first day post-infection. These results indicate that STAT participated in the iNOS regulation with subsequent effect on parasite survival.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Wilfredo Sosa-Ochoa ◽  
Javier Varela Amador ◽  
Yokomi Lozano-Sardaneta ◽  
Gabriela Rodriguez Segura ◽  
Concepcion Zúniga Valeriano ◽  
...  

Abstract Background The two most abundant sand fly species on the Honduran Pacific coast are Lutzomyia (Lutzomyia) longipalpis and Pintomyia (Pifanomyia) evansi. Both species are known vectors of Leishmania (Leishmania) infantum, the etiological agent of visceral leishmaniasis (VL) in the Americas. Although VL and non-ulcerative cutaneous leishmaniasis (NUCL) are endemic on the Pacific versant of the Central American Pacific, the latter is the most frequent manifestation of leishmaniasis there. We evaluated the circulation of Leishmania spp. in the sand fly species on El Tigre Island, an endemic area of NUCL. Results We collected 222 specimens of six sand fly species. Lu. longipalpis (180 specimens; 81%) and Pif. (Pi.) evansi (35 specimens; 16%) were the most abundant species. L. (L.) infantum DNA was detected in nine of the 96 specimens analyzed; seven of these specimens were identified as Lu. longipalpis, and the remaining two were Pi.evansi, with an infection rate of 9.4% and 2.7%, respectively. Conclusion We present the first record of L. (L.) infantum DNA in Pi.evansi from a NUCL endemic region of Central America. Our results suggest that Pi. evansi could be a secondary vector of L. (L.) infantum in the transmission cycle of leishmaniasis. The detection of natural infections of L. (L.) infantum in sand flies in this region contributes to an understanding of the epidemiology of leishmaniasis in Honduras.


Author(s):  
Léo Nava Piorsky Dominici Cruz ◽  
Luis Fernando Carvalho-Costa ◽  
José Manuel Macário Rebêlo

Abstract Wolbachia pipientis (Hertig) is an endosymbiotic microorganism widespread among arthropods and other invertebrate hosts, and employed in strategies to reduce the incidence of arthropod-borne diseases. Here, we used a PCR-based approach for 16S RNA and wsp genes to investigate the prevalence, geographical distribution, and strains of Wolbachia in sand flies (Diptera: Psychodidae: Phlebotominae), the main vectors of the causative agents of leishmaniasis, from three biomes in Brazil: Amazon, Cerrado, and Caatinga. We found that: 1) Wolbachia DNA is present in most (66.7%) of the sampled sand fly species, including vectors of Leishmania spp. (Ross, Trypanosomatida: Trypanosomatidae), 2) the prevalence of Wolbachia DNA varies among species and populations, 3) some strains of Wolbachia may have wider geographical and host range in South America, and 4) two phylogenetic distinct wsp sequences might represent two novel strains for Wolbachia in South America sand flies. Those findings increase the basic knowledge about Wolbachia in South American sand flies and might foster further researches on its use to reduce the transmission of sand fly-borne parasites.


2021 ◽  
Vol 10 (14) ◽  
pp. e596101422480
Author(s):  
Paula Fassicolo Variza ◽  
Thiago Nunes Pereira ◽  
Joice Guilherme de Oliveira ◽  
Millena Fernandes ◽  
Daniel Moreira de Avelar ◽  
...  

The family Psychodidae has a cosmopolitan distribution with members that occur in many habitats, mainly in humid environments, and is most diverse in the tropics. Subfamilies Sycoracinae and Phlebotominae have females with hematophagous habits and the latter studied more due to medical and veterinary interest, since it includes species that can transmit diseases to animals and humans. The knowledge about the sand fly fauna in a region is extremely important for adequate monitoring and control measures for leishmaniasis. Thus, the objective of this study was to characterize Psychodidae fauna in relation to richness, abundance and molecular identification of Leishmania spp. in sand flies in southern Santa Catarina, Brazil. The ollections were carried out between 2015 and 2016 in three cities in Santa Catarina, Brazil. Samples were taken near feeding places for domestic animals, urban forest and peridomicile areas. The insects were identified and female sand flies were submitted to molecular analysis to detect the presence of Leishmania spp.. A total of 4,200 insects were collected, 4,193 from the Sycoracinae subfamily and 7 Phlebotominae from the Nyssomyia neivai and Pintomyia fisheri species. Of the studied municipalities, sandflies were registered in Tubarão and Imaruí and the most frequent habitat was the peridomicile areas. No samples were positive for Leishmania spp. In conclusion, the work highlights the presence of two species of sandflies, which were recorded for the first time in southern Santa Catarina.


Author(s):  
R C S Guimarães ◽  
E F Marialva ◽  
J A Feijó ◽  
J W Pereira-Silva ◽  
K M Martins-Campos ◽  
...  

Abstract Trypanosomatids (Kinetoplastida:Trypanosomatidae) protozoa are a diverse group of obligate parasites. The genera Trypanosoma and Leishmania are the most studied because of their medical importance. This work aims to evaluate the effects of anthropization processes on the composition of the phlebotomine sand fly fauna and the natural infection by Trypanosomatids, with emphasis on Leishmania. At all 3,186 sand flies were collected, distributed in 13 genera and 52 species, being Ny. umbratilis the most abundant species. There was no difference in the diversity between canopy and soil environments. The species abundance and richness were higher in the forest environment while species diversity and evenness were highest in the forest edge. The ITS1 region was used by PCR-RFLP to identify the fragment profiles of Leishmania species, followed by genetic sequencing. Here were analyzed 100 pools of female sand flies, being six positive for DNA parasite. PCR-RFLP fragment patterns similar to Endotrypanum sp. were observed in Nyssomyia anduzei, Psychodopygus amazonensis and Lutzomyia gomezi, and those fragments similar to Leishmania (Leishmania) amazonensis were observed in Bichromomyia flaviscutellata. ITS1 sequencing confirmed the presence of Leishmania sp. in Bi. flaviscutellata, and Leishmania (Viannia) naiffi in Ny. anduzei, Psychodopygus amazonensis, and Lu. gomezi. This is the first record of Lu. gomezi and Ps. amazonensis infection by L. naiffi in the State of Amazonas. These results show the trypanosomatid infection in sandflies from different landscapes in a rural settlement, and the finding of species infected with L.(V.) naiffi suggest that they can develop a role in the transmission cycle of leishmaniasis.


2020 ◽  
Author(s):  
Vanessa Barbosa ◽  
Cristian F Souza ◽  
Derek Gatherer ◽  
Reginaldo P Brazil ◽  
James Gordon Campbell Hamilton

Abstract Background: The sand fly, Lutzomyia longipalpis, is the main vector of Leishmania infantum in Brazil. A previous laboratory study showed that covering surfaces with insecticide-impregnated netting may provide an alternative method for killing sand flies. Synthetic male Lu. longipalpis sex/aggregation pheromone co-located with micro-encapsulated l-cyhalothrin demonstrated the potential of “lure-and-kill” to significantly reduce canine infection and sand fly densities. In this study we were interested to determine if insecticide impregnated netting could replace sprayed insecticide for Lu. longipalpis control.Methods: We placed synthetic pheromone in experimental and real chicken sheds treated with a 1m2 surface of either sprayed insecticide or insecticide-impregnated netting. Two experiments in experimental chicken sheds were carried out to determine the effect of the insecticide treatments on Lu. longipalpis over 1-week and 16-week periods. We counted the number of Lu. longipalpis collected overnight and dead at 24 hours. Two longitudinal intervention studies were carried in real chicken sheds and compared the numbers of Lu. longipalpis (collected and dead at 24h) before adding the intervention (either the netting or sprayed insecticide treatments) with the numbers collected 24h after the intervention. Results: In the first experiment all flies caught in the spray treated experimental chicken sheds were dead at 24 hours and in netting treated sheds 97% of females and 88% of males were dead at 24 hours (257 vs 225, Wilcoxon Signed Ranks Test P=0.043). The netting and spray treated traps were equally effective at killing both female and male Lu. longipalpis over the first 8-weeks however after 16-weeks both treatments killed a significantly lower proportion of females (64%vs 96%; P=0.000) and males 89%vs 100%; P=0.000) compared to the beginning. In the first of the longitudinal studies in real chicken sheds only the netting intervention significantly increased the proportion of females dead after 24h (60%vs81%; P=0.042). The subsequent study showed that both netting and spraying treatments had similarly significant impacts on the proportion of females dead after 24h (netting: 60%vs80%: P=0.0194 and spraying: 43%vs72%: P=0.0004).Conclusions: The netting and spray insecticide interventions (with synthetic sex/aggregation pheromone) have similar impacts on the Lu. longipalpis population.


2020 ◽  
Author(s):  
Wilfredo Humberto Sosa-Ochoa ◽  
Javier Varela Amador ◽  
Yokomi N Lozano-Sardaneta ◽  
Gabriela Rodriguez Segura ◽  
Concepcion Zúniga ◽  
...  

Abstract Background The two most abundant sand flies species in Honduran Pacific coast are Lutzomyia (Lutzomyia) longipalpis and Pintomyia (Pintomyia) evansi. Both species are proved vectors of the agent of for visceral leishmaniasis in South America. Although, visceral and cutaneous non-ulcerated leishmaniasis are endemic of the Central American Pacific, being the Non-ulcerative cutaneous leishmaniasis the most frequent manifestation. In this study, we evaluate the circulation of Leishmania spp in sand flies species in the El Tigre Island, an endemic area of Visceral and Non -ulcerative cutaneous leishmaniasis in Honduras. Results Six sand flies species were identified, being Lu. longipalpis (81%) and Pi. evansi (16%) the more abundant species. Leishmania (Leishmania) infantum DNA was found in 9 of the 96 specimens analyzed, 7 of these specimens was identify as Lutzomyia (Lutzomyia) longipalpis and 2 as Pintomyia (Pifanomyia) evansi, with an infection rate of 9.4% and 2.7% respectively. Conclusion Our results present the first record of Leishmania (L.) infantum DNA in Pintomyia (Pintomyia) evansi in a Non-ulcerative cutaneous leishmaniasis endemic region from Central America. Considering the natural infection of Lu. longipalpis our results suggest that Pintomyia (Pifanomyia) evansi might be a secondary vector of Leishmania (L.) infantum and probably involved in the disease’s transmission cycle. Undoubtedly, the detection of natural infections of in this region contributes to the understanding of the L. (L.) infantum infection epidemiology in Honduras


2021 ◽  
Vol 15 (10) ◽  
pp. e0009366
Author(s):  
Breanna M. Scorza ◽  
Kurayi G. Mahachi ◽  
Arin C. Cox ◽  
Angela J. Toepp ◽  
Adam Leal-Lima ◽  
...  

Background Dogs are the primary reservoir for human visceral leishmaniasis due to Leishmania infantum. Phlebotomine sand flies maintain zoonotic transmission of parasites between dogs and humans. A subset of dogs is infected transplacentally during gestation, but at what stage of the clinical spectrum vertically infected dogs contribute to the infected sand fly pool is unknown. Methodology/Principal findings We examined infectiousness of dogs vertically infected with L. infantum from multiple clinical states to the vector Lutzomyia longipalpis using xenodiagnosis and found that vertically infected dogs were infectious to sand flies at differing rates. Dogs with mild to moderate disease showed significantly higher transmission to the vector than dogs with subclinical or severe disease. We documented a substantial parasite burden in the skin of vertically infected dogs by RT-qPCR, despite these dogs not having received intradermal parasites via sand flies. There was a highly significant correlation between skin parasite burden at the feeding site and sand fly parasite uptake. This suggests dogs with high skin parasite burden contribute the most to the infected sand fly pool. Although skin parasite load and parasitemia correlated with one another, the average parasite number detected in skin was significantly higher compared to blood in matched subjects. Thus, dermal resident parasites were infectious to sand flies from dogs without detectable parasitemia. Conclusions/Significance Together, our data implicate skin parasite burden and earlier clinical status as stronger indicators of outward transmission potential than blood parasite burden. Our studies of a population of dogs without vector transmission highlights the need to consider canine vertical transmission in surveillance and prevention strategies.


Pathogens ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1032
Author(s):  
Edwin Kniha ◽  
Vít Dvořák ◽  
Petr Halada ◽  
Markus Milchram ◽  
Adelheid G. Obwaller ◽  
...  

Sand flies (Diptera: Psychodidae: Phlebotominae) are blood-feeding insects that transmit the protozoan parasites Leishmania spp. and various arthropod-borne (arbo) viruses. While in Mediterranean parts of Europe the sand fly fauna is diverse, in Central European countries including Austria mainly Phlebotomus mascittii is found, an assumed but unproven vector of Leishmania infantum. To update the currently understudied sand fly distribution in Austria, a sand fly survey was performed and other entomological catches were screened for sand flies. Seven new trapping locations of Ph. mascittii are reported including the first record in Vienna, representing also one of the first findings of this species in a city. Morphological identification, supported by fluorescence microscopy, was confirmed by two molecular approaches, including sequencing and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) protein profiling. Sand fly occurrence and activity were evaluated based on surveyed locations, habitat requirements and climatic parameters. Moreover, a first comparison of European Ph. mascittii populations was made by two marker genes, cytochrome c oxidase subunit 1 (COI), and cytochrome b (cytb), as well as MALDI-TOF mass spectra. Our study provides new important records of Ph. mascittii in Austria and valuable data for prospective entomological surveys. MALDI-TOF MS protein profiling was shown to be a reliable tool for differentiation between sand fly species. Rising temperatures and globalization demand for regular entomological surveys to monitor changes in species distribution and composition. This is also important with respect to the possible vector competence of Ph. mascittii.


Sign in / Sign up

Export Citation Format

Share Document