scholarly journals Prevalence and risk factors for selected canine vector-borne diseases in Greece

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Athanasios Angelou ◽  
Athanasios I. Gelasakis ◽  
Natalia Verde ◽  
Nikola Pantchev ◽  
Roland Schaper ◽  
...  
2021 ◽  
Vol 41 (3) ◽  
Author(s):  
Kamani Joshua ◽  
Javier Gonzlez-Miguel

Filarioid worms infecting dogs have recently received increased attention globally because of their zoonotic potential. In Africa and, particularly, in Nigeria, however, where there is preponderance of the risk factors for vector-borne diseases transmission, there are few reports of the disease in the canid and felid definitive hosts, the wild/domestic reservoirs and humans. Thus, the epidemiology of the disease in Nigeria remains sketchy and needs to be investigated. A retrospective analysis of reported canine filarioids in Nigeria was undertaken with the view to highlight what has been done and reported, existing gaps in knowledge, what needs to be done to bridge the gap and possibly how it could be done. Thirteen published works on canine filarioids using classical laboratory methods in Nigeria, reported the finding of Dirofilaria immitis (0.4–15.1%), Dirofilaria repens (0.1–9.4%), Acanthocheilonema reconditum (0.4–9.2%) and a case of A. dracunculoides in an unspecified dog population. In most instances, the species identification of the filarioids reported was not conclusive due to limitation of the diagnostic methods employed. No human infection due to any zoonotic canine filarioid has been reported in Nigeria. Suggestions for prospective filarioids research in Nigeria were made. Keywords: Filarioids, dog, zoonosis, diagnosis, Nigeria


Buildings ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 2 ◽  
Author(s):  
Esther Obonyo ◽  
Sumit Pareek ◽  
Dawit Woldu

Although significant efforts have been made to combat the spread of vector-borne diseases (VBDs), they still account for more than 17% of all infectious diseases. According to the World Health Organization (WHO), there were 216 million estimated cases in 2016. The efforts that resulted in these positive outcomes lack long-term financial sustainability because of the significant amount of funding involved. There is, therefore, a need for more cost-effective intervention. The authors contend that design decisions in the built environment can have a positive impact on the efforts directed at mitigating the risk of malaria in a more cost-effective manner. It is known that the built environment, through features such as openings, can propagate the spread of malaria. There have been some significant efforts directed at addressing this risk. This notwithstanding, an extensive review of closely related work established that built environment professionals have limited access to information on specific ways through which their design decisions can contribute to mitigating the risk of malaria. The validity of this hypothesis was tested through evaluating the opportunities for synergies in selected parts of East Africa. Secondary data derived from relevant urban health journals as well as repositories curated by leading health agencies such as WHO were synthesized and analyzed using a web of causation approach. The outcome of the analysis is a schema of primary and secondary source (risk) factors. The use of the web of causation approach revealed the existing factor-to-factor interactions that could have a reinforcing effect. This information was used to identify the critical linkages and interdependencies across different factors. The outcome of the analysis was mapped against risk factors that can be linked to decisions made during the six primary phases of the construction life cycle: Preliminary phase, conceptual design, detailed design, construction, facilities management, and end of life/disuse. A conceptual architecture for a decision support framework has been proposed and will be developed into a prototype in subsequent efforts.


Author(s):  
Esther Obonyo ◽  
Sumit Pareek ◽  
Dawit Okubatsion Woldu

Although significant efforts have been made to combat the spread of vector-borne diseases (VBDs), they still account for more than 17% of all infectious diseases. According to the World Health Organization (WHO), there were 216 million estimated cases in 2016, which is a 9.3% decrease from the estimated cases reported one decade earlier. It is known that the built environment, through features such as openings, can propagate the spread of malaria. There have been some significant efforts directed at addressing this risk. This notwithstanding, there are some knowledge gaps that have resulted in a missed opportunity for synergistically tackling the problem of vectors through leveraging design decisions made by built environment professionals. This work assesses the extent to which design decisions in the built environment can have a positive impact on the efforts directed at mitigating the risk of malaria based on selected cases from East Africa. Secondary data derived from relevant urban health journals as well as repositories curated by leading health agencies such as WHO were synthesized and analyzed using a web of causation approach. The outcome of the analysis is a schema of primary and secondary source (risk) factors. The use of the web of causation approach revealed the existing factor-to-factor interactions that could have a reinforcing effect. This information was used to identify the critical linkages and interdependencies across different factors. The outcome of the analysis was mapped against risk factors that can be linked to decisions made during the six primary phases of the construction life cycle: preliminary phase, conceptual design, detailed design, construction, facilities management, and end of life/disuse. The findings of the research have established that 1) there is, in fact, a built environment–related opportunity that can be leveraged to advance the impact of malaria mitigation effort; 2) cross-disciplinary synergies are critical to managing the interdependencies and complexity of malaria risk factors that have a reinforcing effect; and 3) a knowledge-management framework that serves as a decision support tool would be valuable for sharing data under a push-and-pull mechanism, in which data shared in real time can address the timeliness of mitigating the spread of malaria at the earliest stages for the greatest impact. Based on the findings, a conceptual architecture for a decision support framework has been proposed. This will be developed into a knowledge-management platform in subsequent efforts.


2017 ◽  
Vol 116 (S1) ◽  
pp. 131-144 ◽  
Author(s):  
Majda Globokar Vrhovec ◽  
Nikola Pantchev ◽  
Klaus Failing ◽  
Christian Bauer ◽  
Nora Travers-Martin ◽  
...  

2019 ◽  
Vol 30 (5) ◽  
pp. 192-194
Author(s):  
John (Luke) Lucas

The author considers the threat to vector-borne diseases in the light of climate change.


2020 ◽  
Vol 14 (1) ◽  
pp. 81-88
Author(s):  
Fedor I. Vasilevich ◽  
Anna M. Nikanorova

The purpose of the research is development of preventive measures against zooanthroponoze vector-borne diseases spread by parasitic arthropods in the Kaluga Region. Materials and methods. The subject of the research was Ixodidae, mosquitoes, and small mammals inhabiting the Kaluga Region. The census of parasitic arthropods was carried out on the territory of all districts of the Kaluga Region and the city of Kaluga. Open natural habitat and human settlements were investigated. Weather conditions from 2013 to 2018 were also taken into account. For the purposes of the study, we used standard methods for capturing and counting arthropods and mouse-like rodents. In order to obtain mathematical models of small mammal populations, a full factorial experiment was conducted using the collected statistical data. In-process testing of the drug based on s-fenvalerate and piperonyl butoxide were carried out under the conditions of the agricultural collective farm “Niva” of the Kozelsky District, the Kaluga Region, and LLC “Angus Center of Genetics” of the Babyninsky District, the Kaluga Region. Results and discussion. In the Kaluga Region, two species of ixodic ticks are found, namely, Ixodes ricinus and Dermacentor reticulatus, which have two activity peaks. Mosquito may have 3-4 generations in a year in the Kaluga region. The most common mosquito species in the Kaluga Region are Aedes communis, Ae. (Och.) togoi and Ae. (Och.) diantaeus, Culex pipiens Culex Linnaeus, 1758 (Diptera, Culicidae) (Culex pipiens): Cx. pipiens f. pipiens L. (non-autogenic form) and Cx. p. f. molestus Fors. (autogenic form), which interbreed, and reproductively isolated in the Region. The developed mathematical models make it possible to quantify the risks of outbreaks of zooanthroponoze vector-borne diseases without the cost of field research, and allow for rational, timely and effective preventive measures. Medications based on s-fenvalerate and piperonyl butoxide and based on cyfluthrin showed high insecto-acaricidal efficacy and safety.


2019 ◽  
Vol 26 (16) ◽  
pp. 2974-2986 ◽  
Author(s):  
Kwang-sun Kim

Vectors are living organisms that transmit infectious diseases from an infected animal to humans or another animal. Biological vectors such as mosquitoes, ticks, and sand flies carry pathogens that multiply within their bodies prior to delivery to a new host. The increased prevalence of Vector-Borne Diseases (VBDs) such as Aedes-borne dengue, Chikungunya (CHIKV), Zika (ZIKV), malaria, Tick-Borne Disease (TBD), and scrub typhus has a huge impact on the health of both humans and livestock worldwide. In particular, zoonotic diseases transmitted by mosquitoes and ticks place a considerable burden on public health. Vaccines, drugs, and vector control methods have been developed to prevent and treat VBDs and have prevented millions of deaths. However, development of such strategies is falling behind the rapid emergence of VBDs. Therefore, a comprehensive approach to fighting VBDs must be considered immediately. In this review, I focus on the challenges posed by emerging outbreaks of VBDs and discuss available drugs and vaccines designed to overcome this burden. Research into promising drugs needs to be upgraded and fast-tracked, and novel drugs or vaccines being tested in in vitro and in vivo models need to be moved into human clinical trials. Active preventive tactics, as well as new and upgraded diagnostics, surveillance, treatments, and vaccination strategies, need to be monitored constantly if we are to manage VBDs of medical importance.


Sign in / Sign up

Export Citation Format

Share Document