scholarly journals Effects of insemination and blood-feeding on locomotor activity of wild-derived females of the malaria mosquito Anopheles coluzzii

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Amadou S. Traoré ◽  
Angélique Porciani ◽  
Nicolas Moiroux ◽  
Roch K. Dabiré ◽  
Frédéric Simard ◽  
...  

Abstract Background Behavioural shifts in the canonical location and timing of biting have been reported in natural populations of anopheline malaria vectors following the implementation of insecticide-based indoor vector control interventions. These modifications increase the likelihood of human-vector contact and allow mosquitoes to avoid insecticides, both conditions being favourable to residual transmission of the malarial parasites. The biting behaviour of mosquitoes follows rhythms that are under the control of biological clocks and environmental conditions, modulated by physiological states. In this work we explore modifications of spontaneous locomotor activity expressed by mosquitoes in different physiological states to highlight phenotypic variability associated to circadian control that may contribute to explain residual transmission in the field. Methods The F10 generation progeny of field-collected Anopheles coluzzii from southwestern Burkina Faso was tested using an automated recording apparatus (Locomotor Activity Monitor, TriKinetics Inc.) under LD 12:12 or DD light regimens in laboratory-controlled conditions. Activity recordings of each test were carried out for a week with 6-day-old females belonging to four experimental treatments, representing factorial combinations of two physiological variables: insemination status (virgin vs inseminated) and gonotrophic status (glucose fed vs blood fed). Chronobiological features of rhythmicity in locomotor activity were explored using periodograms, diversity indices, and generalized linear mixed modelling. Results The average strength of activity, onset of activity, and acrophase were modulated by both nutritional and insemination status as well as by the light regimen. Inseminated females showed a significant excess of arrhythmic activity under DD. When rhythmicity was observed in DD, females displayed sustained activity also during the subjective day. Conclusions Insemination and gonotrophic status influence the underlying light and circadian control of chronobiological features of locomotor activity. Overrepresentation of arrhythmic chronotypes as well as the sustained activity of inseminated females during the subjective day under DD conditions suggests potential activity of natural populations of A. coluzzii during daytime under dim conditions, with implications for residual transmission of malarial parasites. Graphical abstract

Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 97
Author(s):  
Nace Kranjc ◽  
Andrea Crisanti ◽  
Tony Nolan ◽  
Federica Bernardini

The increase in molecular tools for the genetic engineering of insect pests and disease vectors, such as Anopheles mosquitoes that transmit malaria, has led to an unprecedented investigation of the genomic landscape of these organisms. The understanding of genome variability in wild mosquito populations is of primary importance for vector control strategies. This is particularly the case for gene drive systems, which look to introduce genetic traits into a population by targeting specific genomic regions. Gene drive targets with functional or structural constraints are highly desirable as they are less likely to tolerate mutations that prevent targeting by the gene drive and consequent failure of the technology. In this study we describe a bioinformatic pipeline that allows the analysis of whole genome data for the identification of highly conserved regions that can point at potential functional or structural constraints. The analysis was conducted across the genomes of 22 insect species separated by more than hundred million years of evolution and includes the observed genomic variation within field caught samples of Anopheles gambiae and Anopheles coluzzii, the two most dominant malaria vectors. This study offers insight into the level of conservation at a genome-wide scale as well as at per base-pair resolution. The results of this analysis are gathered in a data storage system that allows for flexible extraction and bioinformatic manipulation. Furthermore, it represents a valuable resource that could provide insight into population structure and dynamics of the species in the complex and benefit the development and implementation of genetic strategies to tackle malaria.


2022 ◽  
Author(s):  
Magellan Tchouakui ◽  
Tatiane Assatse ◽  
Leon M. J. Mugenzi ◽  
Benjamin D. Menze ◽  
Daniel Nguiffo-Nguete ◽  
...  

Abstract Background New insecticides with a novel mode of action such as neonicotinoids have recently been recommended for public health by WHO. Resistance monitoring of such novel insecticides requires a robust protocol to monitor the development of resistance in natural populations. In this study, we comparatively used three different solvents to assess the susceptibility of malaria vectors to neonicotinoids across Africa.MethodsMosquitoes were collected from May to July 2021 from three agricultural settings in Cameroon (Njombe-Penja, Nkolondom, and Mangoum), the Democratic Republic of Congo (Ndjili-Brasserie), Ghana (Obuasi), and Uganda (Mayuge). Using the CDC bottle test, we compared the effect of three different solvents (ethanol, acetone, MERO) on the efficacy of neonicotinoids against Anopheles gambiae s.l. In addition, TaqMan assays were used to genotype key pyrethroid-resistant markers in An. gambiae and to evaluate potential cross-resistance between pyrethroids and clothianidin.ResultsLower mortality were observed when using absolute ethanol or acetone alone as solvent (11.4- 51.9% mortality in Nkolondom, 31.7- 48.2% in Mangoum, 34.6- 56.1% in Mayµge, 39.4- 45.6% in Obuasi, 83.7- 89.3% in Congo and 71.05- 95.9% in Njombe pendja) compared to acetone + MERO for which 100% mortality were observed for all the populations. Synergist assays (PBO, DEM and DEF) revealed a significant increase of mortality suggesting that metabolic resistance mechanisms are contributing to the reduced susceptibility. A negative association was observed between the L1014F-kdr mutation and clothianidin resistance with a greater frequency of homozygote resistant mosquitoes among the dead than among survivors (OR=0.5; P=0.02). However, the I114T-GSTe2 was in contrast significantly associated with a greater ability to survive clothianidin with a higher frequency of homozygote resistant among survivors than other genotypes (OR=2.10; P=0.013). ConclusionsThis study revealed a contrasted susceptibility pattern depending on the solvents with ethanol/acetone resulting to lower mortality, thus possibly overestimating resistance, whereas the MERO consistently showed a greater efficacy of neonicotinoids but it could prevent to detect early resistance development. Therefore, we recommend monitoring the susceptibility using both acetone alone and acetone+MERO (8-10µg/ml for clothianidin) to capture the accurate resistance profile of the mosquito populations.


2019 ◽  
Vol 4 ◽  
pp. 13 ◽  
Author(s):  
Magellan Tchouakui ◽  
Billy Tene Fossog ◽  
Brigitte Vanessa Ngannang ◽  
Doumani Djonabaye ◽  
Williams Tchapga ◽  
...  

Background: Metabolic resistance is a serious challenge to current insecticide-based interventions. The extent to which it affects natural populations of mosquitoes including their reproduction ability remains uncharacterised. Here, we investigated the potential impact of the glutathione S-transferase L119F-GSTe2 resistance on the mating competitiveness of male Anopheles funestus, in Cameroon. Methods: Swarms and indoor resting collections took place in March, 2018 in Tibati, Cameroon. WHO tube and cone assays were performed on F1 mosquitoes from indoor collected females to assess the susceptibility profile of malaria vectors. Mosquitoes mated and unmated males collected in the swarms were genotyped for the L119F metabolic marker to assess its association with mating male competitiveness. Results: Susceptibility and synergist assays, showed that this population was multiple resistant to pyrethroids, DDT and carbamates, likely driven by metabolic resistance mechanisms. Cone assays revealed a reduced efficacy of standard pyrethroid-nets (Olyset and PermaNet 2.0) with low mortality (<25%) whereas synergist PBO-Nets (Olyset Plus and PermaNet 3.0) retained greater efficacy with higher mortality (>80%). The L119F-GSTe2 mutation, conferring pyrethroid/DDT resistance, was detected in this An. funestus population at a frequency of 28.8%. In addition, a total of 15 mating swarms were identified and 21 An. funestus couples were isolated from those swarms.  A comparative genotyping of the L119F-GSTe2 mutation between mated and unmated males revealed that heterozygote males 119L/F-RS were less able to mate than homozygote susceptible (OR=7.2, P<0.0001). Surprisingly, heterozygote mosquitoes were also less able to mate than homozygote resistant (OR=4.2, P=0.010) suggesting the presence of a heterozygote disadvantage effect. Overall, mosquitoes bearing the L119-S susceptible allele were significantly more able to mate than those with 119F-R resistant allele (OR=2.1, P=0.03). Conclusion: This study provides preliminary evidences that metabolic resistance potentially exerts a fitness cost on mating competiveness in resistant mosquitoes.


Author(s):  
Adandé A Medjigbodo ◽  
Luc S Djogbenou ◽  
Aubin A Koumba ◽  
Laurette Djossou ◽  
Athanase Badolo ◽  
...  

Abstract An effective control of malaria vectors requires an extensive knowledge of mechanisms underlying the resistance-phenotypes developed by these vectors against insecticides. We investigated Anopheles gambiae mosquitoes from Benin and Togo for their intensity of insecticide resistance and we discussed the involvement of genotyped mechanisms in the resistance-phenotypes observed. Three- to five-day-old adult mosquitoes emerged from field and laboratory An. gambiae larvae were assayed using WHO tube intensity tests against various doses of deltamethrin: 1× (0.05%); 2× (0.1%); 5× (0.25%); 7.5× (0.375%) and those of pirimiphos-methyl: 0.5× (0.125%); 1× (0.25%). Members of An. gambiae complex were screened in field populations using polymerase chain reaction (PCR) assays. The presence of kdrR(1014F/1014S) and ace-1R(119S) mutations was also investigated using TaqMan and PCR-RFLP techniques, respectively. Anopheles gambiae from field were very resistant to deltamethrin, whereas KisKdr and AcerKdrKis strains displayed 100% mortality rates at 2× the diagnostic dose. In contrast, the field mosquitoes displayed a low resistance-intensity against 1× the diagnostic dose of pirimiphos-methyl, whereas AcerKis and AcerKdrKis strains showed susceptibility at 0.5× the diagnostic dose. Anopheles gambiae s.s., Anopheles coluzzii, and Anopheles arabiensis were identified. Allelic frequencies of kdrR (1014F) and ace-1R (119S) mutations in the field populations varied from 0.65 to 1 and 0 to 0.84, respectively. The field An. gambiae displayed high-resistance levels against deltamethrin and pirimiphos-methyl when compared with those of the laboratory An. gambiae-resistant strains. These results exhibit the complexity of underlying insecticide resistance mechanisms in these field malaria vectors.


PLoS ONE ◽  
2019 ◽  
Vol 14 (4) ◽  
pp. e0215669 ◽  
Author(s):  
Joseph Chabi ◽  
Arjen Van’t Hof ◽  
Louis K. N’dri ◽  
Alex Datsomor ◽  
Dora Okyere ◽  
...  

2020 ◽  
Vol 37 (10) ◽  
pp. 2900-2917 ◽  
Author(s):  
Xavier Grau-Bové ◽  
Sean Tomlinson ◽  
Andrias O O’Reilly ◽  
Nicholas J Harding ◽  
Alistair Miles ◽  
...  

Abstract The evolution of insecticide resistance mechanisms in natural populations of Anopheles malaria vectors is a major public health concern across Africa. Using genome sequence data, we study the evolution of resistance mutations in the resistance to dieldrin locus (Rdl), a GABA receptor targeted by several insecticides, but most notably by the long-discontinued cyclodiene, dieldrin. The two Rdl resistance mutations (296G and 296S) spread across West and Central African Anopheles via two independent hard selective sweeps that included likely compensatory nearby mutations, and were followed by a rare combination of introgression across species (from A. gambiae and A. arabiensis to A. coluzzii) and across nonconcordant karyotypes of the 2La chromosomal inversion. Rdl resistance evolved in the 1950s as the first known adaptation to a large-scale insecticide-based intervention, but the evolutionary lessons from this system highlight contemporary and future dangers for management strategies designed to combat development of resistance in malaria vectors.


2019 ◽  
Author(s):  
Xavier Grau-Bové ◽  
Sean Tomlinson ◽  
Andrias O. O’Reilly ◽  
Nicholas J. Harding ◽  
Alistair Miles ◽  
...  

AbstractThe evolution of insecticide resistance mechanisms in natural populations of Anopheles malaria vectors is a major public health concern across Africa. Using genome sequence data, we study the evolution of resistance mutations in the resistance to dieldrin locus (Rdl), a GABA receptor targeted by several insecticides, but most notably by the long-discontinued cyclodiene, dieldrin. The two Rdl resistance mutations (296G and 296S) spread across West and Central African Anopheles via two independent hard selective sweeps that included likely compensatory nearby mutations, and were followed by a rare combination of introgression across species (from A. gambiae and A. arabiensis to A. coluzzii) and across non-concordant karyotypes of the 2La chromosomal inversion. Rdl resistance evolved in the 1950s as the first known adaptation to a large-scale insecticide-based intervention, but the evolutionary lessons from this system highlight contemporary and future dangers for management strategies designed to combat development of resistance in malaria vectors.


2020 ◽  
Author(s):  
Doreen J. Siria ◽  
Roger Sanou ◽  
Joshua Mitton ◽  
Emmanuel P. Mwanga ◽  
Abdoulaye Niang ◽  
...  

AbstractThe malaria parasite, which is transmitted by several Anopheles mosquito species, requires more time to reach its human-transmissible stage than the average lifespan of a mosquito. Monitoring the species-specific age structure of mosquito populations is critical to evaluating the impact of vector control interventions on malaria risk. We developed a rapid, cost-effective surveillance method based on deep learning of mid-infrared spectra of mosquitoes’ cuticle that simultaneously identifies the species and the age of three main malaria vectors, in natural populations. Using over 40,000 ecologically and genetically diverse females, we could speciate and age grade An. gambiae, An. arabiensis, and An. coluzzii with up to 95% accuracy. Further, our model learned the age of new populations with minimal sampling effort and detected the impact of control interventions on simulated mosquito populations, measured as a shift in their age structures. We anticipate our method to be applied to other arthropod vector-borne diseases.


2021 ◽  
Author(s):  
Kelsey L Adams ◽  
Simon P Sawadogo ◽  
Charles Nignan ◽  
Abdoulaye Niang ◽  
Douglas G Paton ◽  
...  

Anopheles coluzzii females, important malaria vectors in Africa, mate only once in their lifetime. Mating occurs in aerial swarms with a high male-to-female ratio, where the traits underling male mating success are largely unknown. Here, we investigated whether cuticular hydrocarbons (CHCs) influence mating success in natural mating swarms in Burkina Faso. As insecticides are widely used in this area for malaria control, we also determined whether CHCs affect insecticide resistance levels. We find that mated males have higher CHC abundance than unmated controls, suggesting CHCs could be a determinant of mating success. Additionally, mated males have higher insecticide resistance under pyrethroid challenge, and we show a link between resistance intensity and CHC abundance. Taken together, our results reveal overlapping roles played by CHCs in mate choice and insecticide resistance, and point to sexual selection for insecticide resistance traits that limit the efficacy of our best malaria control tools.


Sign in / Sign up

Export Citation Format

Share Document